Math, asked by ssj81592, 1 day ago

complete the activity to determine nature of the root of the quadratic equation x^2+2x-9=0​

Answers

Answered by amansharma264
20

EXPLANATION.

Roots of quadratic equation.

⇒ x² + 2x - 9 = 0.

As we know that,

D = discriminant.

⇒ D = b² - 4ac.

⇒ D = (2)² - 4(1)(-9).

⇒ D = 4 + 36.

⇒ D = 40.

D > 0 Root are real and unequal.

                                                                                                               

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) Roots are real and unequal, if b² - 4ac > 0.

(2) Roots are rational and different, if b² - 4ac is a perfect square.

(3) Roots are real and equal, if b² - 4ac = 0.

(4) If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by ot7xbangtonboyz
6

 \huge{ \color{lime}{ \colorbox{black}{Añswèr}}}

  \large \sf \: Solution:  -

Roots of quadratic equation

 \mapsto \:  \sf \:  {x}^{2}  + 2x - 9 = 0

As we know that,

D = discriminant

 \implies \sf \: D \:  =  {b}^{2}  - 4ac

 \implies \sf \: D = ( {2)}^{2}  - 4(1)( - 9)

 \implies \sf  \: D = 4 + 36

  \orange\implies \green {\boxed{ \red{D = 40}}}

 \sf{ \pink{ \fbox{D &gt; 0 \: root \: are \: real \: and \: unequal }}}

 \rule{2000pt}{2.0pt}

 \large{ \green {\boxed{ \bf{ \pmb{ \frak{ \star \:  \:  \:  \: how \: to \: solve: -   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}}}}}

  • in the form ax^2 + bx +c=0
  • we need to caclulate the discriminant,
  • which is b^2 - 4 a c
  • When discriminant is greater than zero, the roots are unequal and real
  • When discriminant is equal to zero, the roots are equal and real

Similar questions