Math, asked by BlueEyedMonster, 2 months ago

Complete values of x satisfying |x+5|+|6-x|=11 is:

A. [-6, 5]
B. [5, 6]
C. [-5, 6]
D. [-6, -5]

Answer with method and don't fùcking spam if you don't know.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: |x + 5| +  |6 - x|  = 11

We know, Definition of Modulus function is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x| -\begin{cases} &\sf{ - x, \:  \: if \: x \:  <  \: 0} \\ &\sf{x  \: \: if  \: x \:  \geqslant  \: 0} \end{cases}\end{gathered}\end{gathered}

So, here breaking points are x = - 5 and x = 6

So, three cases arises.

Case :- 1

\rm :\longmapsto\:When \: x \:  <  \:  -  \: 5

So, given equation

\rm :\longmapsto\: |x + 5| +  |6 - x|  = 11

reduces to

\rm :\longmapsto\: - (x + 5) + (6 - x) = 11

\rm :\longmapsto\: - x - 5 + 6 - x = 11

\rm :\longmapsto\: - 2x + 1 = 11

\rm :\longmapsto\: - 2x = 11 - 1

\rm :\longmapsto\: - 2x = 10

\rm :\longmapsto\: - x = 5

\rm :\implies\:x =  - 5

It means there is no solution.

Case :- 2

\rm :\longmapsto\: When \: - 5 \leqslant x \leqslant 6

So, given equation

\rm :\longmapsto\: |x + 5| +  |6 - x|  = 11

reduces to

\rm :\longmapsto\:x + 5  + (6 - x) = 11

\rm :\longmapsto\:x + 5  + 6 - x = 11

\rm :\longmapsto\:11 = 11

\bf\implies \:x \:  \in \: [ - 5, \: 6]

Case :- 3

\rm :\longmapsto\:When \: x \:  >  \: 6

So, given equation

\rm :\longmapsto\: |x + 5| +  |6 - x|  = 11

reduces to

\rm :\longmapsto\:x + 5 - (6 - x) = 11

\rm :\longmapsto\:x + 5 - 6  + x = 11

\rm :\longmapsto\:2x - 1 = 11

\rm :\longmapsto\:2x = 11 + 1

\rm :\longmapsto\:2x = 12

\rm :\longmapsto\:x = 6

It means, there is no solution.

Hence,

The solution set of equation

\bf :\longmapsto\: |x + 5| +  |6 - x|  = 11

is

\bf\implies \:x \:  \in \: [ - 5, \: 6]

Thus

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \:  \:  \:  \: Option \:  C. \: is \: correct \:  \:  \:  \: }}}

Additional Information :-

\purple{ \boxed{ \bf{ |x|  < y \:  \implies \:  - y < x < y}}}

\purple{ \boxed{ \bf{ |x|   \leqslant  y \:  \implies \:  - y  \leqslant  x  \leqslant  y}}}

\purple{ \boxed{ \bf{ |x|   >  y \:  \implies \: x <  - y \:  \: or \:  \: x  > y}}}

\purple{ \boxed{ \bf{ |x| \geqslant y \:  \implies \: x  \leqslant - y \:  \: or \:  \: x   \geqslant  y}}}

\purple{ \boxed{ \bf{ |x - y| < z \:  \implies \: y - z < x < y + z}}}

\purple{ \boxed{ \bf{ |x - y|  \leqslant  z \:  \implies \: y - z  \leqslant  x  \leqslant  y + z}}}

Answered by amitnrw
4

Given : |x+5|+|6-x|=11  

To Find :   Values of x satisfying

Solution :

|x+5|+|6-x|=11  

| x |  =  x   if  x ≥ 0

      = - x  if x  <  0

Case 1  :  x  >  6    =>  6  - x   <  0    and x + 5 >  0

=>  x  + 5  -  (6 - x)  = 11

=>  2x - 1  = 11

=> 2x = 12

=> x  =  6

Hence no solution for  x > 6

Case 2  : x  < - 5     => x + 5 <  0      6 - x > 0

Hence

-(x + 5)  + 6 - x  =  11

=> - 2x  + 1 = 11

=> x = - 5  

Hence no solution   for x < - 5

Case 3 :     -5 ≤ x  ≤ 6

x + 5 ≥ 0   ,  6 - x ≥  0

=>  x + 5  + 6 - x  =  11

=> 11  = 11

Satisfied for all values of x

Hence x   ∈ [-5 , 6]

Learn More:

If f(x) =||x|-1| graph of (x)

brainly.in/question/17509624

|x|+|x-1|+|x-2|+|x-3|=3k

brainly.in/question/17699726

Similar questions