Math, asked by Anonymous, 6 months ago

complex numbers......​

Attachments:

Answers

Answered by kaushik05
3

To prove :

 \star \:  \frac{1}{1 + 2 \omega}  +  \frac{1}{2 +\omega }  -  \frac{1}{1 +\omega }  = 0 \\

Solution:

As we know that :

 \star \: 1 + \omega +  {\omega}^{2}  = 0 \\  \\  \star \: 1 + \omega =  -  {\omega}^{2}  \\  \\  \star \: 1 + 2\omega = \omega -  {\omega}^{2}  \\  \\  \star \: 2 + \omega = 1 -  {\omega}^{2}  \\

Now LHS :

 \implies \:  \frac{1}{1 + 2\omega}  +  \frac{1}{2 +\omega }  -  \frac{1}{1 + \omega}  \\  \\  \\  \implies \:  \frac{1}{\omega(1 - \omega)}  +  \frac{1}{(1 - \omega)(1 +\omega) }   +  \frac{1}{ {\omega}^{2} }   \\  \\  \implies \:  \frac{\omega(1 +\omega) +  {\omega}^{2}  + 1 -  {\omega}^{2}  }{ {\omega}^{2}(1 -  {\omega}^{2}  )}  \\  \\  \implies \:  \frac{1 +\omega +  {\omega}^{2}  }{ {\omega}^{2} (1 -  {\omega}^{2} )}  \\  \\  \implies \:  \frac{0}{ {\omega}^{2} (1 -  {\omega}^{2} )}  \\  \\  \implies \: 0

LHS= RHS

 \huge \red{ \mathfrak{proved}}

Answered by parry8016
1

Answer:

ANSWER IS 0

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions