Math, asked by yashaswy54, 1 year ago

Compute:
(-3)^4-(4√3)^0×(-2)^5÷(64)^2/3​

Answers

Answered by SarangChoi
26

Answer:

83

Step-by-step explanation:

(-3^{4} )-(3\sqrt{3} )^0*(-2^{5} ) / (64)^{2/3}

81 - 1 * \frac{-32}{16}

16 * -2 is -32 so those get cancelled resulting in ,

81 -1 *-2

81 + 2

83

The Final Answer is 83

Answered by pulakmath007
7

\displaystyle \sf{ {( - 3)}^{4} -  {(4 \sqrt{3}) }^{0}  \times  {( - 2)}^{5} \div  {(64)}^{ \frac{2}{3} }     }  = 83

Correct question :

\displaystyle \sf{Compute \:  \:  {( - 3)}^{4} -  {(4 \sqrt{3}) }^{0}  \times  {( - 2)}^{5} \div  {(64)}^{ \frac{2}{3} }     }

Given :

\displaystyle \sf{ {( - 3)}^{4} -  {(4 \sqrt{3}) }^{0}  \times  {( - 2)}^{5} \div  {(64)}^{ \frac{2}{3} }     }

To find :

Simplify the expression

Formula :

We are aware of the formula on indices that :

 \sf{1. \:  \:  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

 \displaystyle \sf{2. \:  \:  \: \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

 \displaystyle \sf{3. \:  \:  \:  { ({a}^{m} )}^{n} =  {a}^{mn}  }

 \displaystyle \sf{4. \:  \:  {a}^{0}  = 1}

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{ {( - 3)}^{4} -  {(4 \sqrt{3}) }^{0}  \times  {( - 2)}^{5} \div  {(64)}^{ \frac{2}{3} }     }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{ {( - 3)}^{4} -  {(4 \sqrt{3}) }^{0}  \times  {( - 2)}^{5} \div  {(64)}^{ \frac{2}{3} }     }

\displaystyle \sf{ =  {( - 3)}^{4} -\bigg[{(4 \sqrt{3}) }^{0}  \times  {( - 2)}^{5} \div  {(64)}^{ \frac{2}{3} }     \bigg]   }

\displaystyle \sf{  = {( - 3)}^{4} -  \bigg[ 1 \times  {( - 2)}^{5} \div  {(64)}^{ \frac{2}{3} }   \bigg] } \:  \:  \: \bigg( \:  \because \:  {a}^{0} = 1 \bigg)

\displaystyle \sf{  = {( - 3)}^{4} -\bigg[  {( - 2)}^{5} \div  {( {2}^{6} )}^{ \frac{2}{3} }    \bigg]   }

\displaystyle \sf{  = {(   3)}^{4}  +\bigg[{(  2)}^{5} \div  {( {2}^{} )}^{6 \times  \frac{2}{3} }\bigg]         }

\displaystyle \sf{  = 81  +   \bigg[{(  2)}^{5} \div  {( {2}^{} )}^{4}\bigg]      }

\displaystyle \sf{  = 81  +   \bigg[{(  2)}^{5 - 4}\bigg]      }

\displaystyle \sf{  = 81  +   \bigg[{(  2)}^{1}\bigg]      }

\displaystyle \sf{  = 81  +   2     }

\displaystyle \sf{   = 83}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. choose the correct alternative : 100¹⁰⁰ is equal to (a) 2¹⁰⁰ × 50¹⁰⁰ (b) 2¹⁰⁰ + 50¹⁰⁰ (c) 2² × 50⁵⁰ (d) 2² + 50⁵⁰

https://brainly.in/question/47883149

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

#SPJ3

Similar questions