Math, asked by bhubansamal5, 9 months ago

COMPUTE :-

(I) cosec (13π/12)​

Answers

Answered by Anonymous
1

 \tt \huge{answer : } \\  \\  \sf \implies \:cosec( \frac{13\pi}{2}  ) \\  \\ \sf \implies \:cosec(\pi +  \frac{\pi}{12} ) \\  \\ \sf \implies \: - cosec( \frac{\pi}{12} ) \\  \\ \sf \implies \: - cosec \: 15 \:  \degree \\  \\ \sf \implies \: \frac{ - 1}{sin \: 15 \degree}  \\  \\ now \\  \\ \sf \implies \:sin \: 15 \degree \:  = sin(45\degree - 30\degree) = sin \: 45\degree \times cos \: 45\degree - cos \: 45\degree \times sin \: 30\degree =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  -  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  =  \frac{ \sqrt{3} - 1 }{2 \sqrt{2} }  \\  \\ now \\  \\

 \tt \implies \: cosec( \frac{13\pi}{12} ) =  \frac{ - 1}{sin \: 15}  =  \frac{2 \sqrt{2} }{1 -  \sqrt{3} }  \times  \frac{1 +  \sqrt{3} }{1 +  \sqrt{3} }  =  -  \sqrt{2}  -  \sqrt{6}

Similar questions