If f (x) = log (1+2x/1-2x)then x=
Answers
Answered by
1
sathwik hagagsvbe hshsbsbs s hsbs sbs s
eadaddadadaywgwggaha
Answered by
0
Therefore if f(x) = log [ (1+2x) / (1-2x) ] then the value of x is 2f(x).
Given:
f(x) = log [ (1+2x) / (1-2x) ]
To Find:
The value of 'x'.
Solution:
The given question can be solved as shown below.
Given function,
f(x) = log [ (1+2x) / (1-2x) ]
Let us find, f(2x/1+x²) means replace x by 2x / 1+x²
⇒ f (2x / 1+x² ) = log ( 1 + (2x) / (1+x²) )-log(1-(2x)/(1+x²))
⇒ {log(1+x²+2x)-log(1+x²)}-{log(1+x²–2x)-log(1+x²)}
⇒ log(1+x²+2x)-log(1+x²–2x)
⇒ log(x+1)²-log(x-1)²
⇒ 2{log(x+1)-log(x-1)}
⇒ 2{log((x+1)/(x-1))}
⇒ 2{f(x)}
Therefore if f(x) = log [ (1+2x) / (1-2x) ] then the value of x is 2f(x).
#SPJ2
Similar questions