Math, asked by dhwanibhatiya691, 9 months ago

Compute the GCD of 128 and 96 using Euclidean Division Method.​

Answers

Answered by raj1990600
11
Please see the description image
Attachments:
Answered by pulakmath007
24

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

THE DIVISION ALGORITHM

If a and b are integers where b is a positive integer then there exist unique integers q and r such that

 \sf{a = bq + r} \:  \:  \:  \: with \:  \: 0 \leqslant r < b

LEMMA

If m and n are two positive integers and

 \sf{ \: m = nq +r \: , \:   \: 0 \leqslant r < n \: then \: gcd(m,n) = gcd(n,r) }

TO DETERMINE

The GCD of 128 and 96 using Euclidean Division Method.

CALCULATION

 \sf{  \:  \:  \:  \:  \: 128 = 1 \times 96 + 32}

 \sf{  \:  \:  \:  \:  \: 96 = 3\times 32 + 0}

 \sf{Hence \:  \:  gcd ( 128, 96) =32}

Also

 \sf{ \:  \:  \: 32 = 128 - 96 \:  \: }

 \implies \:  \sf{ \:  \:  \: 32 = 1 \times 128  + ( - 1) \times  96 \:  \: }

Similar questions