Physics, asked by someb0dydotin, 7 months ago

Compute the rotational KE of a 25 kg wheel rotating at 6.0 revs/s if the radius of gyration of the wheel is 22cm.​

Answers

Answered by nirman95
4

To find:

The rotational KE of a 25 kg wheel rotating at 6.0 revs/s if the radius of gyration of the wheel is 22cm. ?

Calculation:

The general expression for Rotational Kinetic Energy of a body is:

  \boxed{ \bold{\therefore \: KE  =  \dfrac{1}{2} I { \omega}^{2} }}

  • "I" refers to Moment Of Inertia , \omega represents the angular velocity.

  • Moment Of Inertia can also be represented as product of mass and square of radius of gyration.

  \boxed{ \bold{\implies\: KE  =  \dfrac{1}{2} (m {k}^{2}) { \omega}^{2} }}

Putting available values in SI units:

 \sf\implies\: KE  =  \dfrac{1}{2}  \bigg \{25 \times  { (\dfrac{22}{100} )}^{2} \bigg \}{ (6 \times 2\pi )}^{2}

 \sf\implies\: KE  =  \dfrac{1}{2}  \bigg \{25 \times   (\dfrac{484}{10000} ) \bigg \}{ (6 \times 2\pi )}^{2}

 \sf\implies\: KE  =  \dfrac{1}{2}  \bigg \{ \dfrac{484}{400}  \bigg \}{ (6 \times 2\pi )}^{2}

 \sf\implies\: KE  =  \dfrac{1}{2}  \bigg \{ \dfrac{121}{100}  \bigg \}{ (6 \times 2\pi )}^{2}

 \sf\implies\: KE  =  \dfrac{1}{2}  \bigg \{ 1.21 \bigg \}{ (6 \times 2\pi )}^{2}

 \sf\implies\: KE  =  \dfrac{1}{2}  \bigg \{ 1.21 \bigg \} \times 36 \times 4 {\pi}^{2}

 \sf\implies\: KE  =   \bigg \{ 1.21 \bigg \} \times 18 \times 4 {\pi}^{2}

 \sf\implies\: KE  =   859.83 \: joule

 \sf\implies\: KE   \approx   860\: joule

So, Rotational Kinetic Energy is approximately 860 Joules.

Similar questions