Math, asked by adityaingawale15feb, 11 months ago

Compute the zeroes of the polynomial 4x^2 – 4x – 8. Also, establish a relationship between the zeroes and coefficients.

Answers

Answered by RvChaudharY50
69

Qᴜᴇsᴛɪᴏɴ :-

Compute the zeroes of the polynomial 4x^2 – 4x – 8. Also, establish a relationship between the zeroes and coefficients. ?

Sᴏʟᴜᴛɪᴏɴ :-

Put The Given Quadratic Polynomial Equals to 0 .

→ 4x² - 4x - 8 = 0

→ 4(x² - x - 2) = 0

→ x² - x - 2 = 0

→ x² - 2x + x - 2 = 0

→ x(x - 2) + 1(x - 2) = 0

→ (x - 2)(x + 1) = 0

x = 2 & (-1) .

____________________

Now, First Relation is :-

Sum of Zeros = - (coefficient of x) /(coefficient of x²)

Putting both values ,

→ 2 + (-1) = -(-4)/4

→ 1 = 1 ✪✪ Hence Verified. ✪✪

Second Relation :-

Product Of Zeros = Constant Term / (coefficient of x²)

Putting both Values ,

→ 2 * (-1) = (-8) / (4)

→ (-2) = (-2) ✪✪ Hence Verified. ✪✪

____________________

Answered by Anonymous
33

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

{\star{\sf{ \: 4 {x}^{2}  - 4x - 8 }}}

{\bf{\blue{\underline{Now:}}}}

Divide by 4,

{ :  \implies{\sf{ \:  {x}^{2} - x - 2 = 0  }}}\\ \\

{ :  \implies{\sf{ \:   {x}^{2}  - 2x  + x- 2 = 0  }}}\\ \\

{ :  \implies{\sf{ \:   x(x  - 2) - 1(x  - 2) = 0  }}}\\ \\

{ :  \implies{\sf{ \:   (x + 1)(x  - 2) = 0  }}}\\ \\

Take,

{ :  \implies{\sf{ \:   (x + 1) = 0 \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \: (x  - 2) = 0  }}}\\ \\

{ :  \implies{ {\boxed{\sf{ \:   x =  - 1}} \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \: { \boxed { \sf\: x   = 2 }}}}}\\ \\

So, the value of 4x²-4x-8 is zero when x=-1,2

Therefore,the zeros of 4x²-4x-8 are -1 and 2.

Now,

 \star\boxed{\sf{ \purple  {Sum \: of \: zeros \:  =  \frac{ - (Coefficient \: of \: x)}{Coefficient \: of \:  {x}^{2} }  }}}\\ \\

{ :  \implies{\sf{  - 1 + 2 =  \frac{ - ( - 4)}{ 4}  }}}\\ \\

{ :  \implies{\sf{  1 =  \frac{ - ( - 1)}{ 1}  }}}\\ \\

{ :  \implies \boxed{\sf{  1 =  1 }}}\\ \\

 \star\boxed{\sf{ \purple  {Product \: of \: zeros \:  =  \frac{ constant \: term}{coefficient \: of \:  {x}^{2} }  }}}\\ \\

{ :  \implies {\sf{ ( - 1 )(2) =  \frac{ - 8}{4} }}}\\ \\

   :  \implies\boxed {\sf{  - 2 =   - 2 }}

Hence Verified.

Similar questions