Math, asked by Anju5067, 10 months ago

Condition that sinx,cosxmAy be roots of ax^2+bx+c=0

Answers

Answered by mythu67
0

Answer:

a = 1, b = -(sinX + cosX), c = (sinX)(cosX)\\

Step-by-step explanation:

If sinX and cosX are the roots of ax^{2} + bx + c =0, then (x - sinX)(x - cosX) = ax^{2} + bx + c =0

(x - sinX)(x - cosX) = ax^{2} + bx + c \\x^{2} - xsinX - xcosX + (sinX)(cosX) = ax^{2} + bx + c \\x^{2} - x(sinX+cosX) + (sinX)(cosX) = ax^{2} + bx + c \\ x^{2} - (sinX + cosX)x + (sinX)(cosX) = ax^{2} + bx + c

By comparing, we have

ax^{2} = x^{2}  \\

∴ a = 1

bx = - (sinX + cosX)x

∴ b = -(sinX + cosX)

c = (sinX)(cosX)\\

Hope this helped!

Please mark as brainliest answer!

Similar questions