Math, asked by luckycools9999, 6 months ago

Consider A = {1,2,3,4,5,6,7,8,9} and let B1 = {5,6,7} , B2 = {2,4,5,9} and B3 = {3,4,5,6,8,9}. Find the minsets generated by B1, B2, and B3. Also Do these minsets forms a partition of A?

Answers

Answered by amitnrw
23

Given :  A =  {1,2,3,4,5,6,7,8,9}

B1 = {5,6,7} , B2 = {2,4,5,9} and B3 = {3,4,5,6,8,9}

To Find :  minsets generated by B1, B2, and B3

Solution:

B1 = {5,6,7} , B2 = {2,4,5,9} and B3 = {3,4,5,6,8,9}

B1' = {1,2,3,4,8,9} B2'= {1,3,6,7,8} , B3' = {1, 2 , 7}

B1, B2, and B3 are 3 sets hence minsets generated = 2³ = 8

1                2                3              1 ∩ 2 ∩ 3

B1              B2            B3               5

B1              B2            B3'               Ф

B1              B2'            B3              6

B1              B2'            B3'              7

B1'              B2            B3               4 , 9

B1'              B2            B3'             2

B1'             B2'            B3              3, 8    

B1'              B2'            B3'             1

Union of all sets =  {1,2,3,4,5,6,7,8,9}

Intersection of all sets =   Ф

Hence  these minsets forms a partition of A

Learn More:

Find the minsets generated by B1, B2, and B3.

https://brainly.in/question/28606129

Similar questions