Physics, asked by jskarrey3627, 1 year ago

Consider a steel (youngs modulus e = 200 gpa) column hinged on both sides. Its height is 1.0 m and cross-section is 10 mm 20 mm. The lowest euler critical buckling load (in n) is

Answers

Answered by Anonymous
55
Hey mate ^_^

=======
Answer:
=======

Subject: Mechanics of Materials      

Topic: Euler’s Theory of Columns

Lowest Euler critical buckling load

 = \frac{\pi^{2}EI }{L^{2} }

 = \frac{(3.14)^{2} \times 200 \times 10^{9} \times 0.2 \times (0.01)^{3} }{12 \times 1}

 = \frac{0.98596 \times 40 \times 0.001 \times 0.01 \times 10 ^{9} }{12}

 = \frac{0.98596 \times 0.04 \times 0.01 \times 10^{9} }{12}

 = \frac{0.0394384 \times 0.01 \times 10^{9} }{12}

 = \frac{0.000394384 \times 10^{9} }{12}

 = 3286.53

Therefore,

The lowest euler critical buckling load (in n) is 3286.53

=====
Note:
=====

The final answer must be,

3285\: to \:3295

#Be Brainly❤️

fanbruhh: my pleasure re
shivangi3587: hiiiiiii
shivangi3587: hello
panwarpreet295: nikki plz msg me in inbox plz
panwarpreet295: i need some help
rishi7586: hii nikki
neha123415: pls inbox me
Answered by fanbruhh
26
 \huge \bf{ \red{hey}}

 \huge{ \mathfrak { \pink{here \: is \: answer}}}

\bf{= \frac{\pi^{2}ei }{l^{2} }}

\bf{= \frac{(3.14)^{2} \times 200 \times 10^{9} \times 0.2 \times (0.01)^{3} }{12 \times 1}}

\bf{= \frac{0.98596 \times 40 \times 0.001 \times 0.01 \times 10 ^{9} }{12}}

\bf{= \frac{0.98596 \times 0.04 \times 0.01 \times 10^{9} }{12}}

\bf{= \frac{0.0394384 \times 0.01 \times 10^{9} }{12}}

\bf{= \frac{0.000394384 \times 10^{9} }{12}}

\huge{\red{= 3286.53=3286.53 }}

 \huge \boxed{ \boxed{ \purple{hope \: it \: helps}}}

 \huge{ \green{thanks}}

Anonymous: great answer bro ^_^❤️
fanbruhh: thanka
GalacticCluster: awesome :)
fanbruhh: thanks
fanbruhh: thanka
shivangi3587: hiiiii
neha123415: pls inb9x me
Similar questions