Math, asked by rajkumarahirwar78287, 1 month ago

Consider a two digit number such that when its digits are reversed the new number obtained is 6 more than three times the original number also one digit is five times that of the other find the original number

Answers

Answered by mddilshad11ab
680

\sf\small\underline\blue{Let:-}

\sf{\implies The\:ones\:digit=R}

\sf{\implies The\:tens\: digit=S}

\sf{\implies The\: orginal\: number=10S+R}

\sf\small\underline\blue{To\: Find:-}

\sf{\implies The\: orginal\: number=?}

\sf\small\underline\blue{Solution:-}

Here we will solve this question by setting up equation then solve the the value of R and S. After that by applying value to calculate the original number.

\sf\small\underline\blue{Given\:in\:case-(i):-}

when its digits are reversed the new number obtained is 6 more than three times the original number.

\sf{\implies (Orginal\: number)=3(New\: number)+6}

\sf{\implies (10R+S)=3(10S+R)+6}

\sf{\implies 10R+S=30S+3R+6}

\sf{\implies 10R-3R+S-30S=6}

\sf{\implies 7R-29S=6----(i)}

\sf\small\underline\blue{Given\:in\:case-(ii):-}

One digit is five times that of the other digit.

\sf{\implies Ones\: digit=5(other\: digit)}

\sf{\implies R=5S------(ii)}

  • by Solving equation (i) and (ii) we get:-

\sf{\implies 7R - 29S=6}

  • Putting the value of R=5S:-

\sf{\implies 7(5S)-29S=6}

\sf{\implies 35S-29S=6}

\sf{\implies6S=6}

\sf\red{\implies S=1}

  • Putting the value of S = in eq (ii):-

\sf{\implies R=5S}

\sf{\implies R=5(1)}

\sf\red{\implies R=5}

\sf\large{Hence,}

\sf{\implies The\: orginal\: number=10S+R}

\sf{\implies The\: orginal\: number=10(1)+5}

\bf{\implies The\: orginal\: number=15}

Answered by MяMαgıcıαη
271

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\textsf{\textbf{Question\::}}}

Consider a two digit number such that when its digits are reversed the new number obtained is 6 more than three times the original number also one digit is five times that of the other find the original number.

\underline{\textsf{\textbf{To\:find\::}}}

  • Original number ?

\underline{\textsf{\textbf{Let\::}}}

  • Ones digit = x
  • Tens digit = y
  • Original number = 10y + x

\underline{\textsf{\textbf{Solution\::}}}

¤ First case :

¤ Given :

  • When its digits are reversed the new number obtained is 6 more than three times the original number.

\dashrightarrow\:\tt New\:number = 3(Original\:number) + 6

\dashrightarrow\:\tt 10x + y = 3(10y + x) + 6

\dashrightarrow\:\tt 10x + y = 30y + 3x + 6

\dashrightarrow\:\tt 10x - 3x + y - 30y = 6

\dashrightarrow\:\tt 7x - 29y = 6 \qquad\qquad\lgroup 1 \rgroup

¤ Second case :

¤ Given :

  • One digit is five times that of the other digit.

\longrightarrow\:\tt One\:digit\:=\:5(Other\:digit)

\longrightarrow\:\tt x\:=\:5y \qquad\qquad\qquad \lgroup 2 \rgroup

Now,

¤ From (2) put in (1) :

\:\:\:\dashrightarrow\qquad\tt 7(5y) - 29y = 6

\:\:\:\dashrightarrow\qquad\tt 35y - 29y = 6

\:\:\:\dashrightarrow\qquad\tt 6y = 6

\:\:\:\dashrightarrow\qquad\tt y = \dfrac{6}{6}

\:\:\:\dashrightarrow\qquad\tt y = \dfrac{\cancel{6}}{\cancel{6}}

\:\:\:\dashrightarrow\qquad\bf { y = \red{1}}

¤ Putting value of y in (2) :

\:\:\:\longrightarrow\qquad\tt x = 5(1)

\:\:\:\longrightarrow\qquad\bf {x = \red{5}}

Therefore,

\dashrightarrow\:\tt Original\:number = 10y + x

¤ Putting values of y and x :

\dashrightarrow\:\tt Original\:number = 10(1) + 5

\dashrightarrow\:\tt Original\:number = 10 + 5

\dashrightarrow\:\bf {Original\:number = \red{ 15}}

This is the required answer.

\large\underline{\boxed{\sf{Original\:number\:\leadsto\:\rm\purple{15}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions