Consider the AP: {7, 28, 49, 70, …}. Complete the following statements.
175 is the term of the AP.
1036 is the term of the AP.
Answers
➠Given A•P:-
7, 28 ,49, 70........
➠To find out:-
:-In which term does this number lie is AP 175 and 1056 is a term of the given AP.
➠Solution:-
Let a=first term of Arithematic progression
d=common difference of Arithematic progression
An=nth term of Arithematic progression
Now we have the given AP
7, 28, 49, 70.........
Here a=7 and d=28-7=21
Case:-1 (where An=175)
----------------------------------
Now An=a+(n-1)d
⇒ 175=7+(n-1)21
⇒ 175=7+21n-21
⇒ 175+14=21n
⇒ 189=21n
⇒ n=189/21
⇒ n=9
Hence, 175 is the 9th term of Arithematic progression.
Case:-2 (where An=1036)
------------------------------------
Now An=a+(n-1)d
⇒1036=7+(n-1)21
⇒ 1036=7+21n-21
⇒ 1036+14=21n
⇒ 1050=21n
⇒ n=1050/21
⇒ n=150
Hence, 1036 is also 150th term of Arithematic progression