Consider the arithmetic sequence 11, 19, 27, 35, ....
The sum of the first n terms is 2090. Find the value of n.
Answers
Answered by
0
Step-by-step explanation:
Sn=2090
d=a2-a1
=19-11=8
a1=11
Sn=n/2(2a+(n-1)d)
2090=n/2(2*11+(n-1)8)
4180=n(22+8n-8)
4180=n(14+8n)
4180=14n+8n^2
-8n^2-14n+4180=0
8n^2+14n-4180=0
Use duscriminant fornula of quardic equation
D=b^2-4ac
when D=0 nd D>0 then find n
n = x+-√D/2a
Similar questions