Math, asked by olivejenner, 8 months ago

consider the complex number z=5-√3i÷4+2√3i​

Answers

Answered by Swarup1998
3

Complex numbers

The given complex number is

\quad\quad z=\frac{5-\sqrt{3}i}{4+2\sqrt{3}i}

We have to write z in the form a+ib.

Step-by-step explanation:

The given complex number is

  • z=\frac{5-\sqrt{3}i}{4+2\sqrt{3}i}

Multiply the denominator by the conjugate complex number (4-2\sqrt{3}i).

  • z=\frac{(5-\sqrt{3}i)(4-2\sqrt{3}i)}{(4+2\sqrt{3}i)(4-2\sqrt{3}i)}

Use the identity: (a+b)(a-b)=a^{2}-b^{2} in denominator and multiply the terms of the numerator.

  • z=\frac{20-10\sqrt{3}i-4\sqrt{3}i+6i^{2}}{16-12i^{2}}

We must know that: i^{2}=-1.

  • z=\frac{20-16\sqrt{3}i-6}{16+12}

  • z=\frac{14-16\sqrt{3}i}{28}

  • z=\frac{14}{28}-\frac{16\sqrt{3}}{28}i

  • z=\frac{1}{2}-\frac{4\sqrt{3}}{7}i

This is in the form a+ib.

Answered by Anonymous
4

Complex numbers

The given complex number is

{\quad\quad z=\frac{5-\sqrt{3}i}{4+2\sqrt{3}i}z= }

{4+2^{3}i5−3i}

We have to write zz in the form a+ib.a+ib.

Step-by-step explanation:

The given complex number is

{z=\frac{5-\sqrt{3}i}{4+2\sqrt{3}i}z= }

{ 4+2^{3}i5−3i }

Multiply the denominator by the conjugate complex number

{(4-2\sqrt{3}i).(4−2^{3}i)}

{z=\frac{(5-\sqrt{3}i)(4-2\sqrt{3}i)}{(4+2\sqrt{3}i)(4-2\sqrt{3}i)}z=}

{(4+2^{3}i)(4−2^{3}i)(5−3i)(4−2^{3}i)}

Use the identity:

{(a+b)(a-b)=a^{2}-b^{2}(a+b)(a−b)=a^{2}−b^{2}}

In denominator and multiply the terms of the numerator.

{z=\frac{20-10\sqrt{3}i-4\sqrt{3}i+6i^{2}}{16-12i^{2}}z= }

{16−12i^{2}20−10^{3}i−4^{3}i+6i^{2}}

We must know that:

{i^{2}=-1.i^{2}=−1}

{z=\frac{20-16\sqrt{3}i-6}{16+12}z=}

{16+12+20−16^{3}i−6}

{z=\frac{14-16\sqrt{3}i}{28}z=}

{28×14−16^{3}i}

{z=\frac{14}{28}-\frac{16\sqrt{3}}{28}iz= }

{28+14−28×16^{3}i}

{z=\frac{1}{2}-\frac{4\sqrt{3}}{7}iz= }

{21−74^{3}i}

\bf{ This \: is \: in \: the \: form \: a+ib.a+ib. }

Similar questions