Math, asked by akashakki1767, 9 months ago

Consider the differential equation, y² dx +(x - 1/y) dy = 0. If value of y is 1 when x = 1, then the value of x for which y = 2, is : (A) (3/2) - √e
(B) (1/2) + (1/√e)
(C) (3/2) - (1/√e)
(D) (5/2) + (1/√e)

Answers

Answered by jitendra420156
0

The correct option is option (C)

Therefore the value of x is \frac32-\frac1 {\sqrt e}.

Step-by-step explanation:

Given differential equation is

y^2dy +(x-\frac{1}{y})dy= 0

\Rightarrow y^2\frac{dx}{dy} +x-\frac{1}{y} =0  

\Rightarrow \frac{dx}{dy} +\frac{x}{y^2}-\frac{1}{y^3}=0

\Rightarrow \frac{dx}{dy} +\frac{x}{y^2}=\frac{1}{y^3}......(i)

Here P=\frac{1}{y^2}  and Q=\frac{1}{y^3}

The integrating factor =e^{\int P \ dy}

                                    = e^{\int \frac{1}{y^2} \ dy

                                   =e^{-\frac{1}{y}}

Multiplying the integrating factor both sides of (i)

e^{-\frac{1}{y}} \frac{dx}{dy} +\frac{x}{y^2}e^{-\frac{1}{y}}=\frac{1}{y^3}e^{-\frac{1}{y}}

Integrating both sides

\int e^{-\frac{1}{y}} dx +\int \frac{x}{y^2}e^{-\frac{1}{y}}dy=\int\frac{1}{y^3}e^{-\frac{1}{y}}dy ........(ii)

Let

I_1=\int\frac{1}{y^3}e^{-\frac{1}{y}}dy

   =\int (\frac1 y)(\frac1{y^2}) e^{-\frac{1}{y} dy

Let -\frac{1}{y} =z, Differentiating \frac1{y^2} dy=dz

Then,

I_1=\int (-z)e^zdz

   =-[z\int e^z -\int(\frac{dz}{dz}\int e^zdz)dz]

   =-ze^z +e^z+c

  Putting the value of z

  =(\frac{1}y}+1)e^{-\frac{1}{y}}+c

From (ii) we get

\int e^{-\frac{1}{y}} dx +\int \frac{x}{y^2}e^{-\frac{1}{y}}dy=\int\frac{1}{y^3}e^{-\frac{1}{y}}dy

\Rightarrow xe^{-\frac1y}=(\frac{1}y}+1)e^{-\frac{1}{y}}+c

\Rightarrow x=(\frac{1}y}+1)+c e^{\frac1 y

Given that y=1 when x=1

Putting the value of x and y

\Rightarrow 1=(\frac{1}1}+1)+c e^{\frac 11

\Rightarrow ce=1-2

\Rightarrow c=-e^{-1}

Therefore the required solution  is

x=(\frac{1}y}+1)-e^{-1} e^{\frac1 y

 x=(\frac{1}y}+1)- e^{\frac1 y-1}

Now putting x= 2

\therefore x=(\frac12+1)-e^{\frac12-1}

       =\frac32-e^{-\frac12}

       =\frac32-\frac1 {\sqrt e}

Therefore the value of x is \frac32-\frac1 {\sqrt e}.

Similar questions