Let f(x) = aˣ (a > 0) be written as f(x) = f₁(x) + f₂(x), where f₁(x) is an even function and f₂(x) is an odd function. Then f₁(x + y) + f₁(x - y) equals (A) 2f₁(x)f₂(y) (B) 2f₁(x) f₁(y)
(C) 2f₁(x + y) f₂(x - y) (D) 2f₁(x + y) f₁(x - y)
Answers
Answered by
6
The value of f₁ ( x + y ) + f₁( x - y ) equals 2f₁ ( x ) f₁ ( y )
- Given f ( x ) = aˣ ( a > 0 )
- f ( x ) = f₁ ( x ) + f₂ ( x ) , where f₁ ( x ) is an even function and f₂(x) is an odd function.
We can take
- f1 ( x ) = ( aˣ + ) / 2 since f1 is even
and
- f2 ( x ) = ( aˣ - ) / 2 since f2 is odd
- f₁( x + y ) + f₁ ( x - y ) = ( + ) / 2 + ( ) / 2
- f₁ ( x + y ) + f₁ ( x - y ) = ( ) ( ) / 2
Hence,
- f₁( x + y ) + f₁( x - y ) = 2 f1 ( x ) . f1 ( y )
Similar questions