Consider the following parallelogram. Find the values of the unknowns x, y, z
Answers
Step-by-step explanation:
Consider the following parallelograms. Find the values of the unknowns x, y, z
(i)
(ii)
(iii)
(iv)
(v)
Solution:
(i) \angle B+\angle C=180\degree∠B+∠C=180° [Supplementary angle theorem}
\therefore100\degree+x=180\degree∴100°+x=180° [Given]
x=180\degree-100\degreex=180°−100°
x=80\degreex=80°
(ii)
x+50\degree=180\degreex+50°=180°
[Adjacent angles in ||gm are supplementary]
\Rightarrow x=180\degree-50\degree=130\degree⇒x=180°−50°=130°
\Rightarrow z=x=130\degree⇒z=x=130°
[Corresponding angles]
(iii) x=90\degreex=90°
[Vertically opposite angles]
\Rightarrow y+x+30\degree=180\degree⇒y+x+30°=180°
[Angle sum property of a triangle]
\Rightarrow y+90\degree+30\degree=180\degree⇒y+90°+30°=180°
\Rightarrow y+120\degree=180\degree⇒y+120°=180°
\Rightarrow y=180\degree-120\degree=60\degree⇒y=180°−120°=60°
\Rightarrow z=y=60\degree⇒z=y=60°
[Alternate angles]
(iv) z=80\degreez=80°
[Corresponding angles]
\Rightarrow x+80\degree=180\degree⇒x+80°=180°
[Adjacent angles in a ||gm are supplementary]
\Rightarrow x=180\degree-80\degree=100\degree⇒x=180°−80°=100°
And y=80\degreey=80°
[Opposite angles are equal in a ||gm]
(v) y=112\degreey=112°
[Opposite angles are equal in ||gm]
\Rightarrow40\degree+112\degree+x=180\degree\Rightarrow152\degree+x=180\degree⇒40°+112°+x=180°⇒152°+x=180°
\Rightarrow x=180\degree-152\degree=28\degree⇒x=180°−152°=28°
And z=x=28\degreez=x=28°
[Alternate angles]
Answer:
Answer
(i) x+100=180 [Adjacent angles]
x=80
z=x=80∘[opposite angles are equal]
y=100∘
(ii) 50+y=180
y=130∘
x=y=130∘
and z=x=130∘(corresponding angles)
(iii) x=90∘
(vertically opposite angles)
x+y+30=180∘
y=180−120=60 ∘
z=y=60∘ (Alternate angles)
(iv) z=80,y=80 (Opposite angles)
x+y=180 ∘
,x=180−80⇒x=100 ∘
(v) y=112∘
(opposite angles)
x+y+40=180∘
(Angle sum property)
x=180°−152
x=28°
z=x=28° (alternative angles)