Math, asked by cdaksh04, 10 months ago

Consider the sequence 2017, 2018, 2019, . . . . ., an such that an=an-3 +an-2- an-1 for all n  4 . i.e., 4th term is 2017 +2018 -2019 and so on, then a1990 is

Answers

Answered by amitnrw
2

Given :  sequence 2017, 2018, 2019, . . . . .,

aₙ = aₙ₋₃ + aₙ₋₂ - aₙ₋₁  

To Find : a₁₉₉₀

Solution:

a₁  = 2017

a₂ = 2018

a₃ = 2019

a₄ = a₁ + a₂ - a₃  = 2017 +  2018 - 2019  = 2016

a₅ = a₂ + a₃ - a₄  = 2018 +  2019 - 2016  = 2021

a₆ = a₃ + a₄ - a₅  = 2019 +  2016 - 2021  = 2014

a₇ = a₄ + a₅ - a₆  = 2016 +  2021 - 2014  = 2023

a₈ = a₅ + a₆ - a₇  = 2021 +  2014 - 2023  = 2012

Notice carefully  

2017,  2019  , 2021 , 2023....................

2018 , 2016  , 2014 , 2012 ,.................

a₁₉₉₀  = 995th term in 2018 , 2016  , 2014 , 2012 ,.................

a = 2018

d = -2

n = 995

2018 + (995 - 1) (-2)

= 2018 -1988

=  30

a₁₉₉₀ = 30

or another logic we can perceive

aₙ - n  =  2016    for n = odd  ( 2017 - 1  = 2019 - 3= 2021 -  5 = 2023 - 7 ......)

aₙ +n  =  2020   for n = even ( 2018 + 2 = 2016 + 4 = 2014 + 6 = 2012 + 8 ....)

a₁₉₉₀  => n = 1990  even

Hence a₁₉₉₀ + 1990 = 2020

=> a₁₉₉₀ = 30

Learn More:

पद ज्ञात कीजिए

https://brainly.in/question/9229988

Show that the sequence described by an=1/3n+1/6 is an AP ...

https://brainly.in/question/14339673

Similar questions