Physics, asked by Saliq15, 11 months ago

Consider the situation of the previous problem. A charge of −2.0 × 10−4 C is moved from point A to point B. Find the change in electrical potential energy UB − UA for the cases (a), (b) and (c).

Answers

Answered by bhuvna789456
3

The change in the electrical potential energy (U_B-U_A) for the cases listed below :

Case (A) : (U_B-U_A) = 0.016 J.

Case (B) : (U_B-U_A) = 0.008 J.

Case (C) : (U_B-U_A) = 0.024 J.

Explanation:

Given that ,            

                q=-2.0 \times 10^{-4} \mathrm{C}

                "q" is magnitude of a charge

Case (A) :

               The electrical field direction "x".

               Potential difference of (0, 0) to (4,2)

               dV = -E.dx = -20 × 4 = -80 V

Potential energy \left(U_{B}-U_{A}\right) for points A to B = dv × q

              \left(U_{B}-U_{A}\right)=(-80) \times\left(-2.0 \times 10^{-4} C\right)

                 U_{B}-U_{A}=160 \times 10^{-4}=0.016 J

Case (B)  :

               A = ( 4m,2m)

               B = (6m, 5m)

               dv = -E.dx = -20×2 = -40 v

Potential energy \left(U_{B}-U_{A}\right) for points A to B = dv × q

               \left(U_{B}-U_{A}\right)=(-40) \times\left(-2.0 \times 10^{-4} C\right)

                  U_{B}-U_{A}=80 \times 10^{-4}=0.008 J

Case (c)  :

               A = ( 0m,0m)

               B = (6m, 5m)

               dv = -E.dx = -20×6 = -120 v

Potential energy \left(U_{B}-U_{A}\right) for points A to B = dv × q

            \left(U_{B}-U_{A}\right)=(-120) \times\left(-2.0 \times 10^{-4} C\right)

               U_{B}-U_{A}=240 \times 10^{-4}=0.024 J

Thus, the electrical potential energy (U_B - U_A) for the cases (A), (B) and (C) has been determined.

Similar questions