Math, asked by CopyThat, 4 months ago

Construct two (2 × 2) matrices P and Q such that the elements of P are given by a_i_j = i - 2j and elements of Q are given by a_i_j = 2i - j. Find P + Q ?

Answers

Answered by VishnuPriya2801
32

Answer:-

A (2 × 2) matrix is the matrix where no of rows = 2 & no.of columns = 2.

Let the elements of matrix P be a₁₁ , a₁₂ , a₂₁ & a₂₂ and Q matrix be a'₁₁ , a'₁₂ , a'₂₁ & a'₂₂

It is given that,

For P matrix, the element:

  • aᵢⱼ = i - 2j

So,

  • a₁₁ = 1 - 2(1) = 1 - 2 = - 1. [ i = 1 , j = 1 ]

  • a₁₂ = 1 - 2(2) = 1 - 4 = - 3. [ i = 1 , j = 2 ]

  • a₂₁ = 2 - 2(1) = 2 - 2 = 0. [ i = 2 , j = 1 ]

  • a₂₂ = 2 - 2(2) = 2 - 4 = - 2. [ i = 2 , j = 2 ]

Similarly,

For Q matrix, the element:

  • aᵢⱼ = 2i - j

So,

  • a'₁₁ = 2(1) - 1 = 2 - 1 = 1 [ i = 1 , j = 1 ]

  • a'₁₂ = 2(1) - 2 = 2 - 2 = 0 [ i = 1 , j = 2 ]

  • a'₂₁ = 2(2) - 1 = 4 - 1 = 3 [ i = 2 , j = 1 ]

  • a'₂₂ = 2(2) - 2 = 4 - 2 = 2 [ i = 2 , j = 2 ]

Hence,

 \sf \: P =  \begin{bmatrix} \sf \: a_{11} & \sf \: a_{12}\\  \\ \sf \: a_{21}& \sf \: a_{22} \end{bmatrix} =  \begin{bmatrix} \sf \:  - 1 & \sf \:  - 3 \\  \\ \sf \: 0& \sf \: 2 \end{bmatrix}

And,

 \sf \: Q = \begin{bmatrix} \sf \: a'_{11}& \sf \: a'_{12}\\  \\ \sf \: a'_{21}& \sf \: a'_{22} \end{bmatrix} =  \begin{bmatrix} \sf \:   1 & \sf \:   0 \\  \\ \sf \: 3& \sf \: 2 \end{bmatrix}

Now,

 \implies \sf \: P + Q = \begin{bmatrix} \sf \:  - 1 & \sf \:  - 3 \\  \\ \sf \: 0& \sf \:  - 2 \end{bmatrix} + \begin{bmatrix} \sf \:   1 & \sf \:   0 \\  \\ \sf \: 3& \sf \:  2 \end{bmatrix} \\  \\  \\ \implies \sf \: P + Q =\begin{bmatrix} \sf \:   -  1 + 1 & \sf \:   - 3 +  0 \\  \\ \sf \:0 +  3& \sf \: -  2 + 2 \end{bmatrix} \\  \\  \\ \implies \red{ \sf \: P + Q = \begin{bmatrix} \sf \:  0 & \sf \:   - 3  \\  \\ \sf \:3& \sf \: 0 \end{bmatrix}}

Similar questions