✴️ CONTENT QUALITY ANSWERS✴️
❌ NO SPAMS ❌
PROVE :✨
sin 18° = (√5 - 1)/4
☑️ Appropriate ANSWERS✌️ will surely be appreciated !!! ☑️
ThanK_YoU_☺️
Anonymous:
....
Answers
Answered by
56
Heya!!
so,we have to find the value of sin18° .
Let, y = 18° .
Now,
5y = 18 × 5° = 90°
We know,
sin90° = 1 (rule)
Sin5y =1.
now, 2y + 3y = 90°
=> 2y = 90° - 3y
Taking sin on both sides
sin2y = sin(90-3y)
=> sin2y = cos3y. [ sin(90-y)= cosy]. ...........(I)
Now,
sin2y = 2siny cos y. (rule)
cos3y = 4cos³y - 3 cosy. (rule)
so,equation (I) becomes
2 siny cosy = 4cos³y - 3 cosy
4cos³y - 3 cosy - 2 siny cosy = 0
=>cos y [4cos²y - 3 - 2 siny ] = 0
=>4cos²y - 3 - 2 siny = 0
=>4(1 - sin²y] - 2 siny - 3 = 0
=>4 - 4sin²y - 2 siny - 3 = 0
=>4 sin²y + 2 siny - 1 = 0
by solving the equation by sreedharacharya's rule,we get
siny = √5 - 1 /4 Ans.
Regards
@EVERkshitijEST
so,we have to find the value of sin18° .
Let, y = 18° .
Now,
5y = 18 × 5° = 90°
We know,
sin90° = 1 (rule)
Sin5y =1.
now, 2y + 3y = 90°
=> 2y = 90° - 3y
Taking sin on both sides
sin2y = sin(90-3y)
=> sin2y = cos3y. [ sin(90-y)= cosy]. ...........(I)
Now,
sin2y = 2siny cos y. (rule)
cos3y = 4cos³y - 3 cosy. (rule)
so,equation (I) becomes
2 siny cosy = 4cos³y - 3 cosy
4cos³y - 3 cosy - 2 siny cosy = 0
=>cos y [4cos²y - 3 - 2 siny ] = 0
=>4cos²y - 3 - 2 siny = 0
=>4(1 - sin²y] - 2 siny - 3 = 0
=>4 - 4sin²y - 2 siny - 3 = 0
=>4 sin²y + 2 siny - 1 = 0
by solving the equation by sreedharacharya's rule,we get
siny = √5 - 1 /4 Ans.
Regards
@EVERkshitijEST
Answered by
28
Heya brainliac!
Thnx for asking the question...
♠ TRIGONOMETRIC INDUCTIONS ♠
>>> Let x = 18°
5x = 90°
(3x + 2x) = 90°
2x = 90° - 3x
Applying sin both sides,
sin 2x = sin ( 90° - 3x)
sin 2x = cos 3x
2 sin x cos x = 4 cos³x - 3 cos x
2 sin x cos x - 4 cos³x + 3 cos x = 0
cos x ( 2 sin x - 4 cos²x + 3) = 0
2 sin x - 4 cos²x + 3 = 0
2 sin x - 4(1 - sin² x) + 3 = 0
2 sin x - 4 + 4 sin² x + 3 = 0
4 sin² x + 2 sin x - 1 = 0
Applying quadratic formula,
sin x = -2 ±√(2)² - 4 × 4 × (-1)/ 2×4
sin x = - 2 ± √20 /8
sin x = -2 ± 2√5 /8
sin x = -1 ± √5 /4
sin x = √5 -1/ 4 ( Since x is an acute angle)
Therefore, sin 18° = √5 - 1 /4
Hope this would help you
8
Thnx for asking the question...
♠ TRIGONOMETRIC INDUCTIONS ♠
>>> Let x = 18°
5x = 90°
(3x + 2x) = 90°
2x = 90° - 3x
Applying sin both sides,
sin 2x = sin ( 90° - 3x)
sin 2x = cos 3x
2 sin x cos x = 4 cos³x - 3 cos x
2 sin x cos x - 4 cos³x + 3 cos x = 0
cos x ( 2 sin x - 4 cos²x + 3) = 0
2 sin x - 4 cos²x + 3 = 0
2 sin x - 4(1 - sin² x) + 3 = 0
2 sin x - 4 + 4 sin² x + 3 = 0
4 sin² x + 2 sin x - 1 = 0
Applying quadratic formula,
sin x = -2 ±√(2)² - 4 × 4 × (-1)/ 2×4
sin x = - 2 ± √20 /8
sin x = -2 ± 2√5 /8
sin x = -1 ± √5 /4
sin x = √5 -1/ 4 ( Since x is an acute angle)
Therefore, sin 18° = √5 - 1 /4
Hope this would help you
8
Similar questions