Math, asked by Swarnimkumar22, 1 year ago

☆ content quality required ☆


if
tan \: a \: tan \: b \:  =  \sqrt{ \frac{a - b}{a + b} }

Then, prove that
(a - b \:  \cos(2a)) ((a - b \cos(2b) ) =  {a}^{2} b {}^{2}

Answers

Answered by rohitkumargupta
15

HELLO DEAR,



IT SEEM'S QUESTIONS HAVE SOME ERROR,


YOUR QUESTIONS IS------------------> if


\bold{tanAtanB= \sqrt{ \frac{a - b}{a + b} }}



Then, prove that


(a - b cos2A)(a - b cos2B) = {a}^{2} - b^{2}



GIVEN:-


tanAtanB = √(a - b)/(a + b)



\bold{\Rightarrow tan^2Atan^2B = (a - b)/(a + b)}



tan²Atan²B(a + b) = (a - b)-------------( 1 )



now,



\bold{ (a - bcos2A)*(a - bcos2B) = a^2 - b^2}



we know:- cos2A = (1 - tan ²A)/(1 + tan²A)



so, \bold{\Rightarrow [a - b\frac{1 - tan^2A}{1 + tan^2B}]*[a - b\frac{1 - tan^2B}{1 + tan^2B}]}



\bold{\Rightarrow [a - \frac{b - btan^2A}{1 + tan^2B}]*[a - \frac{b - btan^2B}{1 + tan^2B}]}



\bold{\Rightarrow \frac{a(1 + tan^2A) - b + btan^2A}{(1 + tan^2A)} * \frac{a(1 + tan^2B) - b + btan^2B}{1 + tan^2B}}



\bold{\Rightarrow \frac{(a + atan^2A - b + btan^2A)*(a + atan^2B - b + btan^2B)}{(1 + tan^2A)(1 + tan^2B)}}



\bold{\Rightarrow [\frac{(a - b) + (a + b)tan^2A}{(1 + tan^2A)}]*[\frac{(a - b) + (a + b)tan^2B}{(1 + tan^2B)}]}



\bold{\Rightarrow [\frac{tan^2Atan^2B(a + b) + (a + b)tan^2A}{(1 + tan^2A)}]*[\frac{tan^2Atan^2B(a + b) + (a + b)tan^2B}{(1 + tan^2B)}]}


from -------------( 1 )



\bold{\Rightarrow (a + b)(a + b)(\frac{tan^2Atan^2B + tan^2A}{1 + tan^2A}) * (\frac{tan^2Atan^2B + tan^2B}{1 + tan^2B})}



\bold{\Rightarrow (a + b)(a + b)[\frac{tan^2A(1 + tan^2B)*tan^2B(1 + tan^2A)}{(1 + tan^2A)(1 + tan^2B)}]}



\bold{\Rightarrow (a + b)(a + b)*tan^2Atan^2B}



\bold{\Rightarrow \frac{(a + b)(a + b)(a - b)}{(a + b)}}


From-------------( 1 )


as,[tan²Atan²B = (a - b)/(a + b)]



\bold{\therefore, a^2 - b^2}



\bold{\boxed{HENCE, (a - bcos2A)(a - bcos2B) = (a^2 - b^2)}}



I HOPE ITS HELP YOU DEAR,


THANKS


Swarnimkumar22: thank you bro
Swarnimkumar22: oh I mean gru Gi
rohitkumargupta: :-)
skh2: Great sir..... Really helpful!!
rohitkumargupta: thanks:-)
Answered by Sagar9040
32

❤️Multiple Thanker❤️

❤️Multiple Thanker❤️

❤️Multiple Thanker❤️

La bsdk ke bete areey tum to bade heavy driver ho bhai

Similar questions