★ CONTENT QUALITY SUPPORT REQUIRED ★
★ STANDARD QUESTION 26 ★
The answer with highest efficiency will get marked THE Brainliest , And will be offered an special invitation card
Question is -
Find the range of -
ƒ( x ) =
This question needs a perfect answer ; and it doesn't support lazy ones ! Take care
Answers
Answered by
6
hey there !!
=) f(x) = 1 /{(cosx -3)^2 +(sinx +4)^2 }
let assume y = (cosx -3)^2 + (sinx +4)^2
◆opening square : WE GET ,
y =cos^2x + 9 -6cosx + sin^2x + 16 +8sinx
=) y = (cos^2x +sin^2x) + 25 + 8sinx-6cosx
here we know that : cos^2x + sin^2x = 1
now , y = 1 +25 + 8sinx - 6cosx
=) y = 26 +8sinx - 6cosx -----------(a)
now using trigonometric property ,
range of asinx +_ bcosx lies in an interval [ - √(a^2+b^2) , +√(a^2+b^2) ]
so range of ( 8sinx - 6cosx ) € [ -10 ,10 ]
and range of { 26 +8sinx-6cosx } € [26 -10 , 26 +10 ]
=) {26 +8sinx - 6cosx} € [ 16 , 36 ]
so range of y € [16 ,36]
but we have to find range of 1/y so,
range of f(x) € [1/36 ,1/16] ..
______________________________
Hope it helps
=) f(x) = 1 /{(cosx -3)^2 +(sinx +4)^2 }
let assume y = (cosx -3)^2 + (sinx +4)^2
◆opening square : WE GET ,
y =cos^2x + 9 -6cosx + sin^2x + 16 +8sinx
=) y = (cos^2x +sin^2x) + 25 + 8sinx-6cosx
here we know that : cos^2x + sin^2x = 1
now , y = 1 +25 + 8sinx - 6cosx
=) y = 26 +8sinx - 6cosx -----------(a)
now using trigonometric property ,
range of asinx +_ bcosx lies in an interval [ - √(a^2+b^2) , +√(a^2+b^2) ]
so range of ( 8sinx - 6cosx ) € [ -10 ,10 ]
and range of { 26 +8sinx-6cosx } € [26 -10 , 26 +10 ]
=) {26 +8sinx - 6cosx} € [ 16 , 36 ]
so range of y € [16 ,36]
but we have to find range of 1/y so,
range of f(x) € [1/36 ,1/16] ..
______________________________
Hope it helps
Anonymous:
Thanks a lot for answering with higher efficiency !
Similar questions
Environmental Sciences,
1 year ago