Convert 1
dyne into newton by using dimensional formula
Answers
Step-by-step explanation:
To convert 1 dyne into newton follow the below step by step process
1 dyne= x newton
The dimensional form of the above expression
H_{1}^{1} L_{1}^{1} T_{21}=x H_{1}^{2} L_{1}^{2} T_{22}H
1
1
L
1
1
T
21
=xH
1
2
L
1
2
T
22
To find the value of x
x=1 \times\left[\frac{H_{1}}{H_{2}}\right]^{1}\left[\frac{L_{1}}{L_{2}}\right]^{1}\left[\frac{T_{1}}{T_{2}}\right]^{2}x=1×[
H
2
H
1
]
1
[
L
2
L
1
]
1
[
T
2
T
1
]
2
X=1 \times[g m / k g][c m / m][S / S]X=1×[gm/kg][cm/m][S/S]
Convert the value of kg into gm and m into cm and cancel the common terms
\mathrm{X}=1 \times[\mathrm{gm} / 1000 \mathrm{gm}][\mathrm{cm} / 100 \mathrm{cm}] 1X=1×[gm/1000gm][cm/100cm]1
X=1 \times\left[\frac{1}{10^{3}}\right]\left[\frac{1}{10^{2}}\right] \times 1X=1×[
10
3
1
][
10
2
1
]×1
\begin{gathered}\begin{array}{l}{X=\frac{1}{10^{5}}} \\ {=10^{-5}}\end{array}\end{gathered}
X=
10
5
1
=10
−5
1 dyne = \bold{10^{-5} \mathrm{N}}10
−5
N