Physics, asked by jenifersima38, 6 months ago

Convert 1N into dyne using dimensional analysis

Answers

Answered by BrainlyTwinklingstar
15

AnSwer :

To convert one system of unit into another system.

This is based on the fact that

forba given physical quantity, numerical value × unit = constant .i.e.,

  • N₁U₁ = N₂U₂

Dimensional formula of froce is M¹L¹T¯²

M denotes Mass

L denotes length

T denotes time

1N = n dyne

n = N/dyne

{ \sf{\therefore n_2 = n_1 \bigg[\dfrac{M_1}{M_2}\bigg]^1 \bigg[\dfrac{L_1}{L_2}\bigg]^1  \bigg[\dfrac{T_1}{T_2}\bigg]^{-2}}}

{: \implies{ \sf{\dfrac{ n_2}{n_1} =  \bigg[\dfrac{M_1}{M_2}\bigg]^1 \bigg[\dfrac{L_1}{L_2}\bigg]^1  \bigg[\dfrac{T_1}{T_2}\bigg]^{-2}}}}

{  : \implies{ \sf{n= \bigg[\dfrac{1 \: kg}{1 \: g}\bigg]^1 \bigg[\dfrac{1 \: m}{1 \: cm}\bigg]^1  \bigg[\dfrac{1 \: s}{1 \: s}\bigg]^{-2} \:  \:  \:  \bigg( as \: \dfrac{n_2}{n_1}  = n\bigg) }}}

{  : \implies{ \sf{n= \bigg[\dfrac{1000 \: g}{1 \: g}\bigg]\bigg[\dfrac{100 \: cm}{1 \: cm}\bigg]^1  \bigg[\dfrac{1 \: s}{1 \: s}\bigg]^{-2}  }}}

{:\implies{ \sf{n=[1000 ] \times [100 ]^{ 1} \times [1] ^{ - 2} }}}

{:\implies{ \sf{n= {10}^{5}  }}}

thus, 1newton = 10⁵ dyne

Alternative method :

{:\implies{ \sf{[F] = [MLT^{-2}]}}}

{:\implies{ \sf{1 \: newton = 1(kg)(m)(s)^{ - 2} }}}

{:\implies{ \sf{1 \: newton= 1 \times ( {10}^{3} g)( {10}^{2}cm)(s) ^{ - 2}  }}}

{:\implies{ \sf{1 \: newton= {10}^{5} ( g)(cm)(s) ^{ - 2} }}}

{:\implies{ \sf{1 \: newton=  {10}^{5}  \: dyne  }}}

___________________

Know more

some Applications of dimension :-

☄ Dimensional formula can be used to convert one system of unit into another system.

☄ Dimensional formula can be used to check the correctness of an equation.

☄ Dimensional formula can be used to find unit of a given quantity.

☄ Dimensional formula can be used to derived relationship among different physical quantities.

☄ Dimensional formula can be used to design our own new system of unit

Similar questions