Math, asked by khalidanasreen2210, 3 months ago

convert sin6A+sin2A as product​

Answers

Answered by Anonymous
9

Step-by-step explanation:

Sin 6A + sin 2A = 2 Sin [(6A+2A)/2] Cos [(6A-2A)/2]

= 2 Sin (8A/2) Cos (4A/2)

= 2 Sin 4A Cos 2 A


Anonymous: yeah studies hi
Anonymous: so, can i leave now?? madam
khalidanasreen2210: mai aapko rok k nhi rakhi thi sir aap jaa sakte hai apni marzi se
Anonymous: yeah i know
Anonymous: just kidding
Anonymous: class?? online ya offline?
Anonymous: I'm leaving....bye❤️ kiddo
khalidanasreen2210: it's too horrible ur calling me madam itne clever mathematician mujhe mam bolrhe to
khalidanasreen2210: online....
khalidanasreen2210: ok..bye
Answered by talasilavijaya
0

Answer:

sin 6A + sin 2A = 2sin4A cos2A

Step-by-step explanation:

Given the trigonometric relation, sin 6A + sin 2A

Using the trigonometric identity,

sinA + sin B=2\big(sin\frac{A+B}{2} \big)\big(cos\frac{A-B}{2} \big)

Using A = 6A and B = 2A, the given relation can be written as

sin 6A + sin 2A=2\big(sin\frac{6A+2A}{2} \big)\big(cos\frac{6A-2A}{2} \big)

=2\big(sin\frac{A+B}{2} \big)\big(cos\frac{A-B}{2} \big)

=2\big(sin\frac{8A}{2} \big)\big(cos\frac{4A}{2} \big)

=2sin4A~cos2A

Therefore, sin 6A + sin 2A = 2sin4A cos2A

Similar questions