Math, asked by no1vishesh1, 1 year ago

convert the complex number (1+7i)/(3-4i) in polar form

Answers

Answered by ashishks1912
0

GIVEN :

The complex number is \frac{1+7i}{3-4i}

TO FIND :

The polar form for the given complex number.

SOLUTION :

Given that the  complex number is \frac{1+7i}{3-4i}

Now rationalising the given complex number as below,

\frac{1+7i}{3-4i}

=\frac{1+7i}{3-4i}\times \frac{3+4i}{3+4i}

=\frac{(1+7i)(3+4i)}{(3-4i)(3+4i)}

By using the Distributive property:

(x+y)(a+b)=(x+y)a+(x+y)b

=\frac{(1+7i)(3)+(1+7i)(4i)}{(3-4i)(3+4i)}

By using the Distributive property:

a(x+y)=ax+ay

By using the Algebraic identity:

(a-b)(a+b)=a^2-b^2

=\frac{1(3)+1(4i)+7i(3)+7i(4i)}{3^2-(4i)^2}

=\frac{3+4i+21i+28i^2}{9-16i^2}

=\frac{3+25i+28(-1)}{9-16(-1)} (since i^2=-1)

=\frac{3+25i-28}{9+16}

=\frac{25i-25}{25}

=-1+i

∴ z=-1+i

Let the polar form be z=r(cos\theta+isin\theta)

Now we have that,

-1+i=r(cos\theta+isin\theta)

-1+i=rcos\theta+irsin\theta

Equating the real and imaginary parts

-1=rcos\theta          ,                         1=rsin\theta

Squaring on both sides,        Squaring on both sides

-1^2=(rcos\theta)^2     ,                    1^2=(rsin\theta)^2

1=r^2cos^2\theta\hfill (1)     ,      1=r^2sin^2\theta\hfill (2)

Adding the equations (1) and (2)

1+1=r^2cos^2\theta+r^2sin^2\theta

2=r^2(cos^2\theta+sin^2\theta)

By using the trignometric identity

cos^2x+sin^2x=1

2=r^2(1)

2=r^2

r^2=2

r=\sqrt{2}

Now we have to find the argument of z:

-1+i=r(cos\theta+isin\theta)

Substitute the value of r,

-1+i=\sqrt{2}(cos\theta+isin\theta)

-1+i=\sqrt{2}cos\theta+\sqrt{2}isin\theta

Equating the real and imaginary parts

-1=\sqrt{2}cos\theta     ,      1=\sqrt{2}sin\theta

cos\theta=-\frac{1}{\sqrt{2}}  ,   sin\theta=\frac{1}{\sqrt{2}}

Since sin\theta is positive  and cos\theta is negative,

\theta lies in 2nd quadrant.

Argument=180^{\circ}-45^{\circ}

=135^{\circ}

=135^{\circ}\times \frac{\pi}{180^{\circ}}

=\frac{3\pi}{4}

∴   arg(z)=\frac{3\pi}{4}

We have that r=\sqrt{2} and \theta=\frac{3\pi}{4}

The polar form of z is

z=r(cos\theta+isin\theta)

z=\sqrt{2}(cos\frac{3\pi}{4}+isin\frac{3\pi}{4})

∴ The polar form of z is \sqrt{2}(cos\frac{3\pi}{4}+isin\frac{3\pi}{4})

Similar questions