Math, asked by kushal8943, 1 month ago

convert the complex number -7-24i to its polar form

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: given \: complex \: number \: is \\ z =  - 7 - 24i \\  \\ comparing \: it \: with \:   \: a + ib \:  \\ we \: have \\  \\ a =  - 7 \\ b =  - 24 \\  \\ so \: we \: know \: that \\  \\  |z|  = r =  \sqrt{a {}^{2}  + b {}^{2} }  \\  \\  =  \sqrt{( - 7) {}^{2}  + ( - 24) {}^{2} }  \\  \\  =  \sqrt{49 + 576}  \\  \\  =  \sqrt{625}  \\  \\r  = 25

similarly \: then \\  \\ arg \: (z) = θ = tan {}^{ - 1} (  \: \frac{b}{a}  \: ) \\  \\   = tan {}^{ - 1} ( \frac{ - 24}{ - 7} ) \\  \\  θ= tan {}^{ - 1}  \:  \frac{24}{7}  \\  \\ we \: have \\  \\ polar \: form \: of \: z = r.e {}^{i \:θ }  \\  \\  = 25.r {}^{ \: tan {}^{ - 1} \frac{ \: 24}{7}  i}

Answered by Anonymous
17

Given :-

Complex number is -7-24i

To find :-

Polar form of the given complex number

Solution :-

Inorder to represent any complex number in it's polar form, firstly we need to calculate the modulus and argument of the complex number.

Let's assume that,

  •  y = Im(z)
  •  x = Re(z)

• Now, the modulus of the complex number is given by,

 \small {\implies|z|  =  \sqrt{Re(z)^{2} +Im(z)^{2}} }

  \small{\implies|z|  =  \sqrt{ x^{2} +  {y}^{2}} }

  \small{\implies|z|  =  \sqrt{ ( - 7)^{2} +  { ( - 24)}^{2}} }

\small  {\implies|z|  =  \sqrt{ 49 +  576} }

 \small {\implies|z|  =  \sqrt{625} }

 \small\boxed  {\implies|z|  = 25}

• Now the argument of the complex number in 3rd quadrant is given by,

\small \implies Arg(z) =  \tan^{-}\bigg|\dfrac y x\bigg| -\pi

\small {\implies Arg(z) =  \tan^{-}\bigg|\dfrac { - 24}{ - 7}\bigg| -\pi}

 \small{\implies Arg(z) =  \tan^{-}\bigg|\dfrac { 24}{ 7}\bigg| -\pi}

\small \boxed {\implies Arg(z) =  \tan^{-}\bigg(\dfrac { 24}{ 7}\bigg)-\pi}

• Now, the polar form of complex number is given by,

\small \longrightarrow  r  \Big( \cos\theta + i \sin\theta\Big)

Here,

  •  r = |z|
  •  \theta = Arg(z)

Therefore, by substituting the values, we get :

\small{ \longrightarrow    \underline{\underline{25\Big( \cos {\left[\tan^{-}\left(\dfrac { 24}{ 7}\right)-\pi\right] + i \sin\theta\left[\tan^{-}\left(\dfrac { 24}{ 7}\right)-\pi\right]\Big)}}}}

This is the required polar form of the given complex number.

‎ ‎ ‎

Note :-

This can also be expressed in short as,

\small \underline{ \boxed{\rm 25 \:  cis  \left[\tan^{-}\left(\dfrac { 24}{ 7}\right)-\pi\right]}}

Here, cis stands for cos, iota and sin.

‎ ‎ ‎

Learn More :

Express the complex number √2+4i in the polar form.

https://brainly.in/question/44575209

Similar questions