Math, asked by vignesh9963, 1 year ago

Convert the following to simplest form cot (21pi/2-theta) ​

Answers

Answered by mdaymaan9
29

Answer:

tan thetha

Step-by-step explanation:

hope this helps!!

Attachments:
Answered by payalchatterje
3

Answer:

Required value is \tan(\theta)

Step-by-step explanation:

Given,

 \cot( \frac{21\pi}{2} -  \theta)

Here  \frac{21\pi}{2}  = 10\pi +  \frac{\pi}{2}

So,

\cot( \frac{21\pi}{2} -  \theta) =  \cot(10\pi +  \frac{\pi}{2} -   \theta) ......(1)

We know,

 \cot(a\pi + x)  =  \cot(x)

From (1),

\cot(10\pi +  \frac{\pi}{2} -   \theta) =  \cot(  \frac{\pi}{2} -   \theta)  =  \tan(\theta)

Here applied formula,

 \cot( \frac{\pi}{2}  - x)  =  \tan(x)

Some other important formulas of Trigonometry,

 \sin(x)  =  \cos(\frac{\pi}{2}  - x)  \\  \tan(x)  =  \cot(\frac{\pi}{2}  - x)  \\  \sec(x)  =  \csc(\frac{\pi}{2}  - x)  \\ \cos(x)  =  \sin(\frac{\pi}{2}  - x)  \\ \cot(x)  =  \tan(\frac{\pi}{2}  - x)  \\ \csc(x)  =  \sec(\frac{\pi}{2}  - x)

Similar questions