Math, asked by Kushev6242, 7 months ago

Coordinates of the vertices of a triangle are P (-5, -1), Q (3, -5), R (5, 2). What is the area of triangle PQR?

Answers

Answered by VishnuPriya2801
28

Answer:-

Given Points are P( - 5 , - 1) , Q (3 , - 5) , R(5 , 2).

We know that,

Area of a triangle with co - ordinates

 \sf (x_1 , y_1) , (x_2 , y_2) \:\&\: (x_3 , y_3) is :

   \sf  \dfrac{1}{2}  \begin{vmatrix} \sf \: x _{1} - x _{2} & \sf \: x _{1} - x _{3} \\  \\  \sf \: y _{1} - y _{2}& \sf \:  y _{1} - y _{3} \end{vmatrix} \quad

Let,

  • x1 = - 5

  • x2 = 3

  • x3 = 5

  • y1 = - 1

  • y2 = - 5

  • y3 = 2

Hence,

 \sf \implies \: Area \: of  \:  \triangle \: PQR =  \dfrac{1}{2}  \begin{vmatrix} \sf \:  - 5 - 3& \sf - 5 - 5 \\   \\ \sf \:  - 1 - ( - 5)& \sf \:  - 1 - 2\end {vmatrix} \\  \\  \sf \implies \: Area \: of \:  \triangle \: PQR =  \dfrac{1}{2}  \begin{vmatrix} \sf - 8& \sf - 10 \\ \sf 4&  \sf- 3 \end{vmatrix} \\  \\  \sf \implies \: Area \: of \:  \triangle \: PQR =   \dfrac{  1}{2}  | ( - 8)( - 3) -( 4)( - 10)|  \\  \\  \sf \implies \: Area \: of \:  \triangle \: PQR =  \dfrac{1}{2}  |24 + 40|  \\  \\  \sf \implies \: Area \: of \:  \triangle \: PQR =  \frac{1}{2}  \times 64 \\  \\  \sf \implies \large \red{ Area \: of \:  \triangle \: PQR = 32  \:unit ^{2} }

Therefore, the area of given triangle PQR is 32 unit².

Answered by Anonymous
14

Given :-

  • Coordinates of P = ( - 5 , - 1 )

  • Coordinates of P = ( 3 , - 5 )

  • Coordinates of R = ( 5 , 2 )

To Find :-

  • Area of the triangle made by adjoining of given vertices

Solution :-

 \implies \boxed{ \bf \red {Area =  \frac{1}{2} \bigg[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \bigg]}}\\

Here

 \tt x_1 =  - 5 \:  \:  \:   \:  \:  \:  \:  \:  \:  \: x_2 = 3 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: x_3 = 5 \\  \\ \tt y_1 =  -1 \:  \:  \:   \:  \:  \:  \:  \:  \:  \: y_2 =  - 5 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: y_3 = 2

Substitute values in formula

 \implies \sf Area = \dfrac{1}{2} \bigg[ - 5( - 5 - 2) + 3(2 + 1) + 5( - 1 + 5) \bigg]\\  \\\implies \sf Area = \dfrac{1}{2} \bigg[- 5( -7) + 3(3) + 5(4) \bigg]\\ \\\implies \sf Area = \dfrac{1}{2} \bigg[35 + 9 + 20\bigg] \\  \\\implies \sf Area = \frac{1}{2} \times64\\  \\ \implies \underline{\boxed{\sf \blue{ Area = 32 \: cm^2}}}

Similar questions