Math, asked by siddharthkumar308310, 1 month ago

copy me solve kr k batana please​

Attachments:

Answers

Answered by SugarCrash
10

Question :

  • \left(\dfrac{64^{-1}}{64^{-7}}\right) ^7

Solution :

\sf \longmapsto \left(\dfrac{64^{-1}}{64^{-7}}\right) ^7

We know that,

\red\bigstar\:\boxed{\sf\dfrac{a^m}{a^n}} = a^{m-n}

Applying this Identity here,

\dashrightarrow \left( 64^{(-1) -(-7)} \right)^7 \\\\\dashrightarrow \left( 64^{-1+7} \right)^7 \\\\\dashrightarrow \left( 64^6 \right) ^7

We also know that,

\red\bigstar\:\boxed{\sf (a^m)^n = a^{m\times n} }

Applying this Identity here,

\longmapsto \left( 64^6 \right) ^7 \\\\\dashrightarrow 64^{6 \times 7} \\\\\dashrightarrow \pink{64^{42}}

╼╼╼╼╼╼╼╼╼╼╼╼╼

More to know :

  • \sf a^m\times a^n = a^{m+n}
  • \sf (a^m)^n = a^{mn}
  • \sf a^1 = a
  • \sf a^0 = 1
  • \sf a^{-m}=\frac{1}{a^m}
  • \sf a^{m/n}=\sqrt[m]{a^n} = \sqrt[m]{a}\;^n
  • \sf a^m = a^n \: , then \: m= n
Attachments:
Similar questions