Math, asked by Pritishree3831, 9 months ago

Cos^-1(1-9^x/1+9^x) differentiate with respect to x

Answers

Answered by pulakmath007
15

SOLUTION

TO DIFFERENTIATE

 \displaystyle \sf{  { \cos}^{ - 1} \bigg( \:  \frac{1 -  {9}^{x} }{1 +  {9}^{x} }  \bigg) \: }

EVALUATION

Let us take

 \displaystyle \sf{y =   { \cos}^{ - 1} \bigg( \:  \frac{1 -  {9}^{x} }{1 +  {9}^{x} }  \bigg) \: }

 \implies \displaystyle \sf{y =   { \cos}^{ - 1} \bigg( \:  \frac{1 - {( {3}^{x} )}^{2} }{1 +  {({3}^{x} )}^{2} }  \bigg) \: }

Let  \sf{ {3}^{x}  =  \tan \theta}

Then

 \displaystyle \sf{y =   { \cos}^{ - 1} \bigg( \:  \frac{1 - { \tan}^{2}  \theta}{1 +  { \tan }^{2} \theta }  \bigg) \: }

 \implies \displaystyle \sf{y =   { \cos}^{ - 1}( \cos2 \theta)\: }

 \implies \displaystyle \sf{y =   2 \theta}

 \implies \displaystyle \sf{y = 2  {  { \tan}^{ - 1} ( {3}^{x} })  }

Now Differentiating both sides with respect to x we get

 \displaystyle \sf{ \frac{dy}{dx} =2. \frac{1}{1 +  { ( {3}^{x} )}^{2} }  \: . \:  \frac{d}{dx}  \bigg( {3}^{x}  \bigg) }

 \implies \displaystyle \sf{ \frac{dy}{dx} =  \frac{2}{1 +  {9}^{x} } \: . \:  {3}^{x} \ln  3  }

FINAL ANSWER

  \boxed{ \displaystyle \sf{   \: \frac{d}{dx }   \bigg [\displaystyle \sf{  { \cos}^{ - 1} \bigg( \:  \frac{1 -  {9}^{x} }{1 +  {9}^{x} }  \bigg) \: } \bigg]=  \frac{2}{1 +  {9}^{x} } \: . \:  {3}^{x} \ln  3  } \:  }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Let f(1) = 3,f' (1)=- 1/3,

g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2]

W. r. to. x. is

https://brainly.in/question/18312318

Similar questions