Math, asked by CorradinoPapa7329, 1 year ago

Cos-1 ⅘ + cos-1 12/13 = cos-1 33/65

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

माना  L.H.S.=\theta,  तब  

\theta>0और  

\theta=\cos^{-1}(\dfrac{4}{5} )+cos^{-1}(\dfrac{12}{13} )<\dfrac{\pi}{2} +\dfrac{\pi}{2}\\\\\\=>0<\theta<\pi

तथा

     \cos\theta=cos(cos^{-1}(\dfrac{4}{5} )+cos^{-1}(\dfrac{12}{13} ))\\\\\\=cos(cos^{-1}(\dfrac{4}{5} ))\cos(\cos^{-1}(\dfrac{12}{13} ))-\sin(cos^-1}(\dfrac{4}{5} ))\sin(cos^{-1}(\dfrac{12}{13} ))\\\\\\=\dfrac{4}{5} *\dfrac{12}{13}-\sqrt{1-(\dfrac{4}{5})^2} \sqrt{1-(\dfrac{12}{13})^2} \\\\\\=\dfrac{48}{65}-\dfrac{3}{5}*\dfrac{5}{13}\\\\\\=\dfrac{48-15}{65}\\\\=\dfrac{33}{65}\\\\\\\cos\theta=\dfrac{33}{65}=>\theta=\cos^{-1}(\dfrac{33}{65})

Similar questions