Math, asked by priyathomas7736, 1 year ago

tan-1 63/16 = sin-1 5/13 +cos-1 ⅗

Answers

Answered by kaushalinspire
2

Answer:

Step-by-step explanation:

माना    sin^{-1}(\dfrac{5}{13} )=\theta, cos^{-1}(\dfrac{3}{5} )=Q

तब   tan\theta=\dfrac{sin\theta}{cos\theta} = \dfrac{sin(sin^{-1}(\dfrac{5}{13} ))}{cos(sin^{-1}(\dfrac{5}{13})) }\\\\\\=\dfrac{\dfrac{5}{13} }{\sqrt{1-(5/13)^2} } \\\\\\=\dfrac{5/13}{12/13} \\\\\\=\dfrac{5}{12}

और   tanQ=\dfrac{sinQ}{cosQ} = \dfrac{sin(cos^{-1}(\dfrac{3}{5} ))}{cos(cos^{-1}(\dfrac{3}{5})) }\\\\\\=\dfrac{\sqrt{1-(3/5)^2} }{3/5} \\\\\\=\dfrac{4/5}{3/5} \\\\\\=\dfrac{4}{3}

इसलिए

        tan(\theta+Q)=tan\dfrac{tan\theta+tanQ}{1-tan\theta tanQ} \\\\\\=\dfrac{\dfrac{4}{12}+\dfrac{4}{3}  }{1-\dfrac{5}{12} *\dfrac{4}{5} } \\\\\\=\dfrac{15+48}{36-20} \\\\=\dfrac{63}{16} \\\\\\=>\theta+Q=tan^{-1}(\dfrac{63}{16} )

Answered by sandy1816
2

let \:  \:  \:  \:  {sin}^{ - 1}  \frac{5}{13}  = a \:  \:  \:  \:  \:  \:  {cos}^{ - 1}  \frac{3}{5}  = b \\  \\ sina =  \frac{5}{13}  \\  \\ cosa =  \sqrt{1 -  \frac{25}{169} }  \\  \\ cosa =  \sqrt{ \frac{144}{169} }  \\  \\ cosa =  \frac{12}{13}  \\  \\  {cos}^{ - 1}  \frac{3}{5}  = b \\  \\ cosb =  \frac{3}{5}  \\  \\ sinb =  \sqrt{1 -  \frac{9}{25} }  \\  \\ sinb =  \frac{4}{5}  \\  \\ tana =  \frac{sina}{cosa}  =  \frac{ \frac{5}{13} }{ \frac{12}{13} }  =  \frac{5}{12}  \\  \\ tanb =  \frac{ \frac{4}{5} }{ \frac{3}{5} }  =  \frac{4}{3}  \\  \\ tan(a + b) =  \frac{tana + tanb}{1 - tanatanb}  \\  \\ tan(a + b) =  \frac{ \frac{5}{12}  +  \frac{4}{3} }{1 -  \frac{5}{12} \times  \frac{4}{3}  }  \\  \\ tan(a + b) =  \frac{15 + 48}{36 - 20}  \\  \\  {tan}(a + b) =  \frac{63}{16}   \\  \\ a + b =  {tan}^{ - 1} ( \frac{63}{16}) \\  \\  {sin}^{ - 1}   \frac{5}{13}  +  {cos}^{ - 1}  \frac{3}{5}  =  {tan}^{ - 1}  \frac{63}{16}

Similar questions