Math, asked by varshiniganesh2142, 1 month ago

cos 15°-cos 75° =
a) whole root 3/2 b)root 3/2 c) 1/2 d) 1/root 2

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

To  \: find  = value \: of \: cos \: 15 - cos \: 45 \\ \\  so \: cos \: 15 \: can \: be \: written \: as \: cos(45 - 30) \\ and \: similarly \: cos \: 75 \: as \: cos \: (45 + 30) \\  \\ so \: here \: cos \: (45 - 30) \: and \: cos \: (45 + 30) \: are \: in \:  \\ form   \: \: cos \: (A  - B) \: and \: cos \: (A + B) \: respectively \\  \\ so \: we \: know \: that \\ cos \: (A  - B) = cos \: A.cos \: B \:   +   \: sin \: A.sin \: B \\ \\  cos \: (A + B) = cos \: A.cos \: B \:  -  \: sin \: A.sin \: B

hence \: then \: accordingly \\ cos \: 15 - cos \: 75  \\  = cos \: 45.cos \: 30 \:  +  \: sin \: 30.sin \: 45 \:  -  \: (cos \: 30.cos \: 45  \:  -  \: sin \: 30.sin \: 45) \\  = cos \: 30.cos \: 45  \:  +  \: sin \: 30.sin \: 45 \:  -  \: cos \: 30.cos \: 45 + sin \: 30.sin \: 45 \\  = sin \: 30.sin \: 45 + sin \: 30.sin \: 45 \\  = 2.sin \: 30.sin \: 45 \\  = 2  \times  \frac{1}{2}  \times  \frac{1}{ \sqrt{2} }  \\ since \: sin \: 30 =  \frac{1}{2}  \\  \\ sin \: 45 =  \frac{1}{ \sqrt{2} }  \\  \\ thus \: then \\  = 1 \times  \frac{1}{ \sqrt{2} }  \\  \\  =  \frac{1}{ \sqrt{2} }  \\  \\ hence \: cos \: 15 \:  -  \: cos \: 75 =  \frac{1}{ \sqrt{2} }

Similar questions