cos^2θ/1+sin^2θ.=cot(π/4+θ.) prove this
Answers
Answered by
0
Answer:
we know,
sin2A = 2sinA.cosA
cos2A = 1–2sin²A = 2cos²A-1 = cos²A-sin²A
sin²A+cos²A = 1
tan(x-y) = (tanx-tiny)/(1+tanx.tany)
To prove : Cos 2θ/ (1 +Sin 2θ) = tan (π /4 – θ)
L.H.S.
cos2θ/(1+sin 2θ)
= (cos²θ-sin²θ)/(1 +2sinθ.cosθ)
= (cosθ+sinθ)(cosθ-sinθ)/ (cos²θ+sin²θ+2sinθ.cosθ)
= (cosθ+sinθ)(cosθ-sinθ)/(cosθ+sinθ)²
= (cosθ-sinθ)/(cosθ+sinθ)
Dividing the numerator and denominator by cosθ
= (1-tanθ)/(1+tanθ)
= (tanπ/4-tanθ)/(1+tanπ/4.tanθ)
= tan(π/4-θ) = R.H.S.
Step-by-step explanation:
I hope it will help uhhh
Similar questions