Math, asked by kartiksharma5617, 10 months ago

Cos^2(π/3-x) -cos^2(π/3+x) =

Answers

Answered by mutasim0911
0

Answer:

 { \cos }^{2} ( \frac{\pi}{3}  - x) -  { \cos }^{2} ( \frac{\pi}{3}  + x) \\  \frac{1}{2} (2{ \cos }^{2} ( \frac{\pi}{3}  - x) -  2{ \cos }^{2} ( \frac{\pi}{3}  + x) ) \\ \frac{1}{2} ( \cos ( \frac{2\pi}{3}  - 2x)  + 1-  \cos ( \frac{2\pi}{3}  +2x)  - 1) \\ \frac{1}{2} ( \cos ( \frac{2\pi}{3}  - 2x)  -  \cos ( \frac{2\pi}{3}  +2x) ) \\ \frac{1}{2} ( 2 \sin ( \frac{2\pi}{3} )\sin  ( 2x) ) \\  \sin ( \frac{2\pi}{3} )\sin  ( 2x) \\  \sin ( \pi -  \frac{\pi}{3} )\sin  ( 2x) \\  \sin ( \frac{\pi}{3} )\sin  ( 2x) \\   ( \frac{ \sqrt{3} }{2}  )\sin  ( 2x) \\ you \: can \: end \: up \: here...  \\  \\  or \: you \: can \: add \: 2 \: lines \: more \: if \: it \: is \: asked \: in \:  \: question \: paper.\\ \frac{ \sqrt{3} }{2} \times 2 \sin(x) \cos(x)  \\  \sqrt{3}  \sin(x) \cos(x)

Similar questions