Cos^2(45°+x)+cos^2(45°-x)/tan(60°+x)+ tan(30°-x)+(cot30°+sin 90°)×(tan60°-sec0°)
Answers
Answered by
16
Answer:
= Sin(30-x) Cos(30-x) + 2
Step-by-step explanation:
Cos²(45°+x)+cos²(45°-x)
= Cos²(45°+x)+Sin²(90 - (45°-x))
= Cos²(45°+x)+Sin²(45°+x)
= 1
tan(60°+x) + tan(30°-x)
= Cot (90 - (60 + x)) + tan(30°-x)
= Cot (30 - x) + tan(30°-x)
= Cos(30 -x)/Sin(30-x) + Sin(30-x)/Cos(30-x)
= (Cos²(30 -x) + Sin²(30-x))/Sin(30-x) Cos(30-x)
= 1/Sin(30-x) Cos(30-x)
=> Cos^2(45°+x)+cos^2(45°-x)/tan(60°+x)+ tan(30°-x) = Sin(30-x) Cos(30-x)
(cot30°+sin 90°)×(tan60°-sec0°)
= (√3 + 1)(√3 - 1)
= 3 - 1
= 2
= Sin(30-x) Cos(30-x) + 2
Similar questions