cos 2 theta/(1-tan theta)+sin 3 theta/(sin theta - cos theta)=1+sin theta.cos theta
Answers
Answered by
4
LHS = cos²∅/(1 - tan∅) + sin³∅/(sin∅ - cos∅)
= cos²∅/(1 - sin∅/cos∅) + sin³∅/(sin∅ - cos∅)
= cos²∅.cos∅/(cos∅ - sin∅) + sin³∅/(sin∅ - cos∅)
= cos³∅/(cos∅ - sin∅) - sin³∅/(cos∅ - sin∅)
= (cos³∅ - sin³∅)/(cos∅ - sin∅)
= (cos∅ - sin∅)(sin²∅ + cos²∅ + sin∅.cos∅)/(cos∅ - sin∅)
= (sin²∅ + cos²∅ + sin∅.cos∅)
[ we know, Sin²x + cos²x = 1 so, sin²∅ + cos²∅ = 1 ]
= 1 + sin∅.cos∅ = RHS
= cos²∅/(1 - sin∅/cos∅) + sin³∅/(sin∅ - cos∅)
= cos²∅.cos∅/(cos∅ - sin∅) + sin³∅/(sin∅ - cos∅)
= cos³∅/(cos∅ - sin∅) - sin³∅/(cos∅ - sin∅)
= (cos³∅ - sin³∅)/(cos∅ - sin∅)
= (cos∅ - sin∅)(sin²∅ + cos²∅ + sin∅.cos∅)/(cos∅ - sin∅)
= (sin²∅ + cos²∅ + sin∅.cos∅)
[ we know, Sin²x + cos²x = 1 so, sin²∅ + cos²∅ = 1 ]
= 1 + sin∅.cos∅ = RHS
Answered by
5
Solution:

taking LCM

As we know that

Because

= R.H.S.
Hence proved
taking LCM
As we know that
Because
= R.H.S.
Hence proved
Similar questions
English,
9 months ago
Math,
9 months ago
Computer Science,
9 months ago
Math,
1 year ago
English,
1 year ago