cos(π/2-x).cos(π/2-y)-sin(π/2-x).(sinπ/2-y) = cos(x+y)
Answers
Answered by
4
EXPLANATION.
⇒ cos(π/2 - x). cos(π/2 - y) - sin(π/2 - x). sin(π/2 - y).
As we know that,
Formula of :
⇒ cos(π/2 - θ) = sinθ.
⇒ sin(π/2 - θ) = cosθ.
Using this formula in the equation, we get.
⇒ sin(x). sin(y) - cos(x). cos(y).
As we know that,
Formula of :
⇒ cos(x + y) = cos(x). cos(y) - sin(x). sin(y).
We can write equation as,
⇒ - [cos(x).cos(y) - sin(x).sin(y)].
⇒ - cos(x + y).
MORE INFORMATION.
(1) sin2θ = 2sinθcosθ = 2tanθ/1 + tan²θ.
(2) cos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ = 1 - tan²θ/1 + tan²θ.
(3) tan2θ = 2tanθ/1 - tan²θ.
(4) sin3θ = 3sinθ - 4sin³θ.
(5) cos3θ = 4cos³θ - 3cosθ.
(6) tan3θ = 3tanθ - tan³θ/1 - 3tan²θ.
Answered by
1
{\implies -cos(x+y)}
Similar questions