Math, asked by ikhan76, 1 year ago

cos 23 + sin 23 upon cos 23 minus sin 23​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{\dfrac{cos\,23^\circ+sin\,23^\circ}{cos\,23^\circ-sin\,23^\circ}}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{\dfrac{cos\,23^\circ+sin\,23^\circ}{cos\,23^\circ-sin\,23^\circ}}

\underline{\textbf{Solution:}}

\underline{\textbf{Formula used:}}

\boxed{\mathsf{tan(A+B)=\dfrac{tanA+tanB}{1-tanA\,tanB}}}

\mathsf{Consider,}

\mathsf{\dfrac{cos\,23^\circ+sin\,23^\circ}{cos\,23^\circ-sin\,23^\circ}}

\textsf{This can be written as,}

\mathsf{=\dfrac{cos\,23^\circ\left(1+\dfrac{sin\,23^\circ}{cos\,23^\circ}\right)}{cos\,23^\circ\left(1-\dfrac{sin\,23^\circ}{cos\,23^\circ}\right)}}

\mathsf{=\dfrac{1+tan\,23^\circ}{1-tan\,23^\circ}}

\mathsf{=\dfrac{tan\,45^\circ+tan\,23^\circ}{1-tan\,45^\circ\,tan\,23^\circ}}

\textsf{Using the above formula, we get}

\mathsf{=tan(45^\circ+23^\circ)}

\mathsf{=tan\,68^\circ}

\implies\boxed{\mathsf{\dfrac{cos\,23^\circ+sin\,23^\circ}{cos\,23^\circ-sin\,23^\circ}=tan\,68^\circ}}

Similar questions