Math, asked by ddraoddp, 13 hours ago

cos 24° + cos 55° + cos 125° + cos 204° =
1)-1 2) 0
3) 1 4) 2​

Answers

Answered by Anonymous
28

Answer:

0 (Option 2)

Step-by-step explanation:

As per the information provided in the question, We have :

  • cos 24° + cos 55° + cos 125° + cos 204°.

We are asked to add these. In order to do that, We will simplify the given equation using the identity mentioned below.

{\longmapsto \bf \cos(A) + \cos(B) = 2  \cos\bigg(\dfrac{A + B}{2}\bigg) \cos\bigg(\dfrac{A - B}{2}\bigg)}

Applying this to cos 55° + cos 125°,

{\longmapsto \rm \cos(24 ^ \circ) +  2  \cos\bigg(\dfrac{55^ \circ + 125^ \circ}{2}\bigg) \cos\bigg(\dfrac{55^ \circ  - 125^ \circ}{2}\bigg)+  \cos(204^ \circ)}

On simplifying,

{\longmapsto \rm \cos(24 ^ \circ) +  2  \cos\bigg(\dfrac{180^ \circ}{2}\bigg) \cos\bigg(\dfrac{ - 70^ \circ}{2}\bigg)+  \cos(204^ \circ)}

{\longmapsto \rm \cos(24 ^ \circ) +  2  \cos(90 ^ \circ)\cos ( - 35)+  \cos(204^ \circ)}

Cos(-b) = cos(b). Thus,

{\longmapsto \rm \cos(24 ^ \circ) +  2  \cos(90 ^ \circ)\cos ( 35)+  \cos(204^ \circ)}

The value of Cos(90°) is 0, Thus,

{\longmapsto \rm \cos(24 ^ \circ) +  2  \times 0 \times \cos ( 35)+  \cos(204^ \circ)}

{\longmapsto \rm \cos(24 ^ \circ) +  0 \times \cos ( 35)+  \cos(204^ \circ)}

{\longmapsto \rm \cos(24 ^ \circ) +  0 +  \cos(204^ \circ)}

{\longmapsto \rm \cos(24 ^ \circ) +  \cos(204^ \circ)}

Applying the same identity again,

{\longmapsto \bf \cos(A) + \cos(B) = 2  \cos\bigg(\dfrac{A + B}{2}\bigg) \cos\bigg(\dfrac{A - B}{2}\bigg)}

{\longmapsto \rm 2  \cos\bigg(\dfrac{24^ \circ + 204^ \circ}{2}\bigg) \cos\bigg(\dfrac{24^ \circ  - 204^ \circ}{2}\bigg)}

On simplifying,

{\longmapsto \rm 2  \cos\bigg(\dfrac{228}{2}\bigg) \cos\bigg(\dfrac{ - 180}{2}\bigg)}

{\longmapsto \rm 2  \cos(114 ^{ \circ} ) \cos(90^{ \circ})}

{\longmapsto \rm 2  \cos(114 ^{ \circ} ) \times 0}

{\longmapsto \rm 2  \times 0}

{\longmapsto \rm 0}

∴ cos 24° + cos 55° + cos 125° + cos 204° is 0.

Answered by TYKE
6

Question :

cos 24° + cos 55° + cos 125° + cos 204°

Solution :

We have to arrange them first

→ cos 24° + cos 204° + cos 55° + cos 125°

→ cos 24° + cos(90° × 2 + 24°) + cos (90° - 35°) + cos(90° + 35°)

→ cos 24° - cos 24° + sin 35° - sin 35°

→ 0

So the correct answer is : option 2 i.e. 0

Similar questions