cos 24° + cos 55° + cos 125° + cos 204° =
1)-1 2) 0
3) 1 4) 2
Answers
Answered by
28
Answer:
0 (Option 2)
Step-by-step explanation:
As per the information provided in the question, We have :
- cos 24° + cos 55° + cos 125° + cos 204°.
We are asked to add these. In order to do that, We will simplify the given equation using the identity mentioned below.
Applying this to cos 55° + cos 125°,
On simplifying,
Cos(-b) = cos(b). Thus,
The value of Cos(90°) is 0, Thus,
Applying the same identity again,
On simplifying,
∴ cos 24° + cos 55° + cos 125° + cos 204° is 0.
Answered by
6
Question :
cos 24° + cos 55° + cos 125° + cos 204°
Solution :
We have to arrange them first
→ cos 24° + cos 204° + cos 55° + cos 125°
→ cos 24° + cos(90° × 2 + 24°) + cos (90° - 35°) + cos(90° + 35°)
→ cos 24° - cos 24° + sin 35° - sin 35°
→ 0
So the correct answer is : option 2 i.e. 0
Similar questions