Math, asked by ddraoddp, 25 days ago

cos 24° + cos 55° + cos 125° + cos 204° =
1)-1 2) 0
3) 1 4)2
COSA COSA COSA -3-sinA
+ sinA​

Answers

Answered by apekshasrivastava070
0

Answer:

1/2

Step-by-step explanation:

i hope it will help you

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\:cos24\degree  + cos55\degree  + cos125\degree  + cos204

can be rewritten as

\rm \:  =  \:  \: (cos24\degree  + cos204\degree ) + (cos55\degree  + cos125\degree )

Consider,

\red{\rm :\longmapsto\:cos204\degree }

\rm \:  =  \:  \: cos(90\degree  \times 2 + 24\degree )

Now, it implies cos204° lies in third quadrant,

So, cos is negative and as its even multiple of 90°, so there is no change in Trigonometric ratio.

Thus,

\rm \:  =  \:  \:  -  \: cos24\degree

\red{\rm :\longmapsto\:cos204\degree  =  -  \: cos24\degree }

Again, Consider

\red{\rm :\longmapsto\:cos125\degree  }

\rm \:  =  \:  \: cos(180\degree  - 55\degree )

\rm \:  =  \:  \: cos(90\degree \times 2  - 55\degree )

It implies, cos155° lies in second quadrant and we know in second quadrant cos is negative and as its have even multiple of 90°, so there is no change in Trigonometric ratio.

Thus,

\rm \:  =  \:  \:  -  \: cos55\degree

\red{\rm :\longmapsto\:cos125\degree   =  -  \: cos55\degree }

Hence,

\rm \:  =  \:  \: (cos24\degree  + cos204\degree ) + (cos55\degree  + cos125\degree )

can be rewritten as

\rm \:  =  \:  \: (cos24\degree   -  cos24\degree ) + (cos55\degree   -  cos55\degree )

\rm \:  =  \:  \: 0 + 0

\rm \:  =  \:  \: 0

Hence,

 \blue{\bf :\longmapsto\:cos24\degree  + cos55\degree  + cos125\degree  + cos204 = 0}

Additional Information :-

Sign of Trigonometric ratios in Quadrants

sin (90°-θ)  =  cos θ

cos (90°-θ)  =  sin θ

tan (90°-θ)  =  cot θ

csc (90°-θ)  =  sec θ

sec (90°-θ)  =  csc θ

cot (90°-θ)  =  tan θ

sin (90°+θ)  =  cos θ

cos (90°+θ)  =  -sin θ

tan (90°+θ)  =  -cot θ

csc (90°+θ)  =  sec θ

sec (90°+θ)  =  -csc θ

cot (90°+θ)  =  -tan θ

sin (180°-θ)  =  sin θ

cos (180°-θ)  =  -cos θ

tan (180°-θ)  =  -tan θ

csc (180°-θ)  =  csc θ

sec (180°-θ)  =  -sec θ

cot (180°-θ)  =  -cot θ

sin (180°+θ)  =  -sin θ

cos (180°+θ)  =  -cos θ

tan (180°+θ)  =  tan θ

csc (180°+θ)  =  -csc θ

sec (180°+θ)  =  -sec θ

cot (180°+θ)  =  cot θ

sin (270°-θ)  =  -cos θ

cos (270°-θ)  =  -sin θ

tan (270°-θ)  =  cot θ

csc (270°-θ)  =  -sec θ

sec (270°-θ)  =  -csc θ

cot (270°-θ)  =  tan θ

sin (270°+θ)  =  -cos θ

cos (270°+θ)  =  sin θ

tan (270°+θ)  =  -cot θ

csc (270°+θ)  =  -sec θ

sec (270°+θ)  =  cos θ

cot (270°+θ)  =  -tan θ

Similar questions