cos 2A cos 2B + sin²(A - B) - sin²(A + B)
Answers
Answered by
0
Answer:
sin2(A-B) - sin2(A+B) =sin(A+A)sin(-B-B) [using formula ,sin2a-sin2b=sin(a-b)sin(a+b)]
=sin(-2B)sin2A=-sin2Asin2B
Now LHS becomes
= cos2Acos2B-sin2Asin2B [using formula ,cosacosb - sinasinb =cos(a+b)]
=cos(2A+2B)=cos2(A+B) = RHS
hence proved
Answered by
0
Step-by-step explanation:
sin2(A-B) - sin2(A+B) =sin(A+A)sin(-B-B) [using formula ,sin2a-sin2b=sin(a-b)sin(a+b)]
=sin(-2B)sin2A=-sin2Asin2B
Now LHS becomes
= cos2Acos2B-sin2Asin2B [using formula ,cosacosb - sinasinb =cos(a+b)]
=cos(2A+2B)=cos2(A+B) = RHS
Similar questions