Math, asked by Tauqeer9050, 1 year ago

cos (2pi + theta) cosec ( 2 pi + theta ) tan ( pi/2 +theta ) / sec( pi/2 + theta ) cos theta cot ( pi + theta)

Answers

Answered by sprao534
26

Please see the attachment

Attachments:
Answered by mysticd
16

_________________

/* We know that,

 cos(2\pi + \theta) = cos \theta \\cosec (2\pi + \theta) = Cosec \theta \\tan (\frac{\pi}{2}+ \theta)= -cot \theta \\</p><p>sec(\frac{\pi}{2} + \theta) = - Cosec \theta \\cot (\pi + \theta) = cot \theta

_____________________ */

 Value \:of \: \frac{cos(2\pi + \theta)cosec (2\pi + \theta) tan (\frac{\pi}{2}+ \theta)}{ sec(\frac{\pi}{2} + \theta)cos \theta cot (\pi + \theta)}

 = \frac{cos \theta Cosec \theta (-cot\theta) }{ (-cosec \theta ) cos \theta cot \theta } \\=\frac{-cos \theta Cosec \theta cot\theta }{- cosec \theta  cos \theta cot \theta } \\= 1

Therefore.,

\red{ Value \:of \: \frac{cos(2\pi + \theta)cosec (2\pi + \theta) tan (\frac{\pi}{2}+ \theta)}{ sec(\frac{\pi}{2} + \theta)cos \theta cot (\pi + \theta)}}\green {= 1 }

•••♪

Similar questions