Math, asked by vkmallik9, 4 months ago

cos 2xdx
(sinx+cosx)^
2​

Answers

Answered by chutki12
2

∫(sinx+cosx)2cos2xdx

=∫(sinx+cosx)2cos2x−sin2xdx      [∵cos2θ=cos2θ−sin2θ]

=∫(sinx+cosx)2(cosx−sinx)(cosx+sinx)(cosx+sinx)dx

=∫sinx+cosxcosx−sinxdx

Let sinx+cosx=t

(cosx−sinx)dx=dt

∫tdt

lnt+C

ln(sinx+cosx)+C

∴∫(sinx+cosx)2cos2xdx=ln(sinx+cosx)+

Similar questions