Math, asked by drhaleema1995, 1 year ago

(cos 3θ/cos θ + sin 3 θ/sin θ ) = 4(2cos^2 θ -1) prove that?​

Answers

Answered by ihrishi
1

Step-by-step explanation:

 \frac{cos \: 3 \theta}{cos \:  \theta}  +  \frac{sin \: 3 \theta}{sin \:  \theta} = 4(2 {cos}^{2}  \theta - 1) \\ LHS = \frac{cos \: 3 \theta}{cos \:  \theta}  +  \frac{sin \: 3 \theta}{sin \:  \theta}  \:  \\  =  \frac{cos \: 3 \theta \: sin \:  \theta \:  + sin \: 3 \theta \: cos \theta}{sin \theta \: cos \:  \theta}   \\ =  \frac{ sin \: 3 \theta \: cos \theta \: + cos \: 3 \theta \: sin \:  \theta \:  }{sin \theta \: cos \:  \theta}   \\  =  \frac{sin \: (3 \theta \:  +  \theta)}{sin \theta \: cos \:  \theta}  \\  =  \frac{sin \: 4 \theta}{sin \theta \: cos \:  \theta}  \:  \\  =  \frac{2sin \: 2 \theta \: cos \: 2 \theta}{sin \theta \: cos \:  \theta}  \\  =  \frac{2 \times 2sin \:  \theta \:  cos \:  \theta\: cos \: 2 \theta}{sin \theta \: cos \:  \theta}  \\  = 4 \: cos \: 2 \theta \\  = 4(2 {cos }^{2} \theta  - 1) \\  = RHS \\ Thus Proved.  \\

Mark me as brainliest.

Similar questions