cos 37°=a/b find the value of cosec37°-cos53°
Answers
Answered by
1
cos37°=a/b,
then
sin37=√(1-cos²37),
sin37=√(1-a²/b²),
=√(b²-a²)/b,
then
cosec37=1/sin37°,
=b/(√b²-a²),
therefore
cosec37° - cos53°,
cosec37° - sin37°,
b/√(b²-a²) - √(b²-a²)/b,
[b²-(b²-a²)]/[b√(b²-a²),
a²/[b√(b²-a²)
then
sin37=√(1-cos²37),
sin37=√(1-a²/b²),
=√(b²-a²)/b,
then
cosec37=1/sin37°,
=b/(√b²-a²),
therefore
cosec37° - cos53°,
cosec37° - sin37°,
b/√(b²-a²) - √(b²-a²)/b,
[b²-(b²-a²)]/[b√(b²-a²),
a²/[b√(b²-a²)
Similar questions